

DREDGED MATERIAL Research Program

TECHNICAL REPORT 0.77.30

AQUATIC DISPOSAL FIELD INVESTIGATIONS COLUMBIA RIVER DISPOSAL SITE, OREGON APPENDIX C. THE EFFECTS OF DREDGED MATERIAL DISPOSAL ON BENTHIC ASSEMBLAGES

by
Michael D. Richardson, Andrew G. Carey, Jr, Wilism A. Colgate School of Oceanography
Oregon State Univerity
Corvallis, Oregon 97331

Decomber 1977
Final Report

Approvad For Pubtic Woleser, Dhetrbotion untimbted

Prpend to Office, Chief of Engineers, U.S. Army Weshington, D. C. 20314
Under Contract No. DACW57-75-C-0137 and DACW57-76-C-0092
(DMRP Work Unit No. IA07C)
Monitornd by Environmental Effects Laboratory
U. S. Army Engineor Watenveyr Experiment Station
P. O. Bok 631, Vickshurg, Miss 39180

AQUATIC DISPOSAL FIELD INVESTIGATIONS COLUMBIA RIVER DISPOSAL SITE, OREGON

APPENDIX A: Investigation of the Hydroulic Regime and Physical Nature of Bottom Sedimentation

APPENDIX B: Water Column, Primary Productivity, and Sediment Studies

APPENDIX C: The Effects of Dredged Material Disposal on Benthic Assemblages
APPENDIX D: Zooplankton and Ichthyoplankton Studies
APPENDIX E: Demersal Fish and Decapod Shellfish Studies

Destroy this report when no longer needed. Do not return it to the originator.

DEPARTMENT OF THE ARMY
WATERWAYS EXPERIMENT STATION. CORPS OF ENGINEERS

P. O. BOX 631

VICKSBURG. MISSISSIPPI 39180

SUBJECT: Transmiltal of Technical Report D-77-30 (Appendix C)

TO: All Report Recipients

1. The technical report transmitted herewith represents the results of one of several research efforts (Work Units) undertaken as part of Task 1A, Aquatic Disposal Field Investigations (ADFI), of the Corps of Engineers' Dredged Material Research Program (DMRP). Task 1A is a part of the Environmental Impacts and Criteria Development Project (EICDP), which has a general objective of determining the magnitude and extent of effects of disposal sites on organisms and the quality of surrounding water, and the rate, diversity, and extent such sites are recolonized by benthic flora and fauna. The study reported on herein was an integral part of a series of research contracts jointly developed to achieve the EICDP general objective at the Mouth of the Columbia River Disposal Site, one of five sites located in several geographical regions of the United States. Consequently, this report presents results and interpretations of but one of several closely interrelated efforts and should be used only in conjunction with and consideration of the other related reports for this site.
2. This report, Appendix C: The Effects of Dredged Material Disposal on Benthic Assemblages, is one of five contractor-prepared appendices published relative to the Waterways Experiment Station Technical Report D-77-30 entitled: Aquatic Disposal Field Investigations, Columbia River Disposal Site, Oregon. The titles of all appendices of this series are listed on the inside front cover of this report. The main report will provide additional results, interpretations, and conclusions not found in the individual appendices and provide a comprehensive summary and synthesis overview of the entire project.
3. The initial purpose of this study, conducted as Work Unit 1A07C, was to collect baseline information on the benthic community structure of the nearshore zone in the vicinity of the mouth of the Columbia River and to examine the spatial and temporal changes in this community with particular emphasis on historical disposal areas. The final phase of this study was directed toward definition of the effects of dredged

WESYV

SUBJECT: Transmittal of Technical Report D-77-30 (Appendix C)
material disposal on the benthic communities. The rate and pattern of recolonization, as well as the factors affecting recolonization, were also determined.
4. A conclusion of this report, based on the data presented, was that areas exposed to direct disposal of dredged material had higher diversity and evenness values and lower density of macrobenthos than unaffected areas. It can also be concluded from this study that there was a significant reduction in the abundance of 11 of the 33 most abundank species at the areas exposed to direct disposal. Recolonization of benthos into the affected area was probably accomplished by organisms burrowing up through the dredged material, by migration into the area, and, to a lesser extent, by reproduction and recruitment from other areas.
5. The results of this study are particularly important in determining the timing and placement of dredged material for open-water disposal. Referenced studies, as well as others summarized in this report, will aid in determining the optimum disposal conditions and site selection for either the dispersion of the material from the dump site or for its retention within the confines of the site, whichever is preferred for maximum environmental protection.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
1. REPORT NUMBER Technical Report D-77-30 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG Number
4. TITLE (and Subtitte) AQUATIC DISPOSAL FIELD INVESTIGATIONS, COLUMBIA RIVER DISPOSAL SITE, OREGON; APPENDIX C: THE EFFECTS OF DREDGED MATERIAL DISPOSAL ON BENTHIC ASSEMBLAGES	5. TYPE OF REPORT a PERIOD COVERED Final report 6. PERFORMING ORG. REPORT NUMBER
Michael D. Richardson, Andrew G. Carey, Jr., William A. Colgate	B. Contract or grant numberf(s) DACW57-75-C-0137 and DACW57-76-C-0092
9. PERFORMING ORGANIZATION NAME AND ADDRESS School of Oceanography Oregon State University Corvallis, Oregon 97331	10. PROGGAM ELEMENT. PROJECT, TASK AREA \& WORK UNIT NUMEERS DMRP Work Unit No. IAO7C
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REport DaTE December 1977
Office, Chief of Engineers, U. S. Army Washington, D. C. 20314	$\begin{aligned} & \text { 13. NUMBER OF PAGES } \\ & 411 \end{aligned}$
14. MONITORING AGENCY NAME A ADDRESS(If difforent from Controlling office) U. S. Army Engineer Waterways Experiment Station	15. SECURITY CLASS. (of this roport) Unclassified
Environmental Effects Laboratory P. O. Box 631, Vicksburg, Miss. 39180	15. DECLASSSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.	
17. Distribution statement fot the	arit
18. SUPPLEMENTARY NOTES Tables C-IA, C-IB, C-IIB, and C-IIC were reproduced on microfiche and are enclosed in an envelope attached to the inside of the back cover of this report.	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
The objectives of this study were to identify and determine the significance of physical, chemical, and biological factors that govern the rate at which open-water dredged material disposal sites are colonized by benthic assemblages.	

20. ABSTRACT (Continued).
groups were found. The distribution, community structure, and seasonal constancy of these assemblages were related to the distribution of sediments and organic matter, the stability of sediments, and changes in sediment characteristics due to the deposition of fine-grained material from the Columbia River.

The deposition of dredged material significantly increased diversity and evenness values and reduced the density of macrofauna. Of the 33 most abundant species, 11 species had significantly lower abundances at stations exposed to direct dredged material deposition.

The effects of dredged material disposal on benthos were probably related to direct burial of benthos and changes in sediment characteristics and not increased turbidity from the disposal operation or introduction of pollutants or organic matter. Repopulation of benthos into the affected area was probably accomplished primarily by benthos burrowing up through the dredged material or benthos migrating into the area and, to a lesser extent, reproduction and recruitment of benthos from outside the area. There was very little evidence for transportation of benthos to the experimental disposal site via dredged material.

DISCLAIMER

THE CONTENTS OF THIS REPORT ARE NOT TO BE USED FOR ADVERTISING, PUBLICATION, OR PROMOTIONAL PURPOSES. CITATION OF TRADE NAMES DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL PRODUCTS.

The objectives of the Mouth of the Columbia River (MCR) study were to identify and determine the significance of physical, chemical, and biological factors that govern the rate at which open-water dredged material disposal sites are colonized by benthic communities.

The study of benthic assemblages at the MCR site was divided into two phases. Phase I (Contract DACW57-75-C-0137) included collection of baseline information on benthic assemblages, gear evaluation, and planning for the controlled disposal experiment. Phase II (Contract DACW57-76-C-0092) included the controlled disposal experiment and continued collection of seasonal baseline information.

A total of 2,190 samples were obtained from the MCR study site, including 73 metered beam trawls for megafauna, $1,6570.1-\mathrm{m}^{2}$ Smith-McIntyre grabs for macrofauna, 76 samples for meiofauna, five box cores for macrofauna, 369 samples for sediment, and 10 miscellaneous samples. This report includes the results from $1,3590.1-\mathrm{m}^{2}$ Smith-McIntyre grabs for macrofauna ($>1.00 \mathrm{~mm}$) and 67 metered beam trawls for megafauna. A total of 339,753 individuals (425 species) were sorted and identified from the Smith-McIntyre grab samples, and 258,501 individuals (141 species) were sorted and identified from the beam trawl samples.

The location of stations for the areal baseline was determined from a pilot survey (1-2 October 1974) and from data on the distribution of sediments provided by the University of Washington. The analysis of within station and between station variability indicated that five replicate $0.1-\mathrm{m}^{2}$ Smith-McIntyre grab samples per station were adequate to calculate community structure values and classify benthic assemblages and species groups.

The distribution of assemblages and species groups and the values of community structure parameters for the MCR study region were determined from an areal baseline of 100 stations collected in 4-9 December 1974 and 19-25 January 1975. From the results of the areal baseline, 22 station locations were chosen to determine seasonal changes in benthic com-
munities. These stations were sampled on 18-23 April 1975, 23-27 June 1975, 11-16 September 1975, and 3-10 January 1976.

The distribution and community structure of the 5 assemblages and 12 station groups found in the areal baseline as well as the distribution of the 13 species groups are described in the text. The seasonal changes in benthic communities are also described.

Except for Assemblage C (the southern inshore sand assemblage), the species composition, biomass, and density of benthic assemblages off the mouth of the Columbia River were different than values calculated from other benthic assemblages reported from the Oregon-Washington continental shelf. The influence of the Columbia River (scdimentation patterns and high primary productivity) probably accounts for the difference.

The distribution, community structure, and seasonal constancy of benthic assemblages found off the mouth of the Columbia River were interpreted in part to be the result of the same factors that influenced benthic assemblages along the Oregon-Washington coast. These factors included an increase in silt, clay, and organic content in sediments offshore and a decrease in sediment instability due to sediment stirring by winter storms offshore. Superimposed on this depth gradient were the effects of the deposition of fine-grained sediments from the Columbia River and the high primary productivity of the area.

Diversity and species richness values were related to sediment stability. In general, the values of diversity and species richness increased offshore probably as the result of the increased sediment stability due to reduced sediment stirring by winter storms. The high abundance of tube-dwelling polychaetes at deeper stations also increased sediment stability. The lowest values of diversity and species richness were calculated for stations that had considerable seasonal changes in sediment characteristics as a result of the deposition of fine-grained sediments at high flow of the Columbia River.

Biomass and density of macrofauna were related to the organic content of sediments. The biomass and density of macrofauna and the percentage organic content of sediments generally increased offshore. The highest
values of density and biomass were found at areas of high silt deposition because of the high organic content of those sediments.

The seasonal constancy of species composition was highest in areas that had the highest seasonal constancy of sediment characteristics. Benthic assemblages exposed to deposition of fine-grained material by the Columbia River had the highest Czekanowski dissimilarity values (low constancy) between seasons of any stations in the study area. The seasonal constancy of the abundance of dominant species was related to sediment stability. The between-season Bray-Curtis dissimilarity values decreased (higher constancy) with increasing sediment stability offshore (reduced stirring of sediments by storms) and were highest at stations that had the lowest seasonal stability because of deposition by the Columbia River.

From 9 July 1975 to 26 August 1975 approximately $4.6 \times 10^{5} \mathrm{~m}^{3}$ of sand was dredged from the mouth of the Columbia River and deposited at experimental site $G\left(46^{\circ} 06^{\prime} N, 124^{\circ} 11.5^{\prime} \mathrm{W}\right)$. The experimental site region was sampled three times prior to disposal (4-9 December 1974, 18-23 April 1975, 23-27 June 1975) and five times after disposal (ll-16 September 1975, 20-25 October 1975, 3-10 January 1976, 19-20 April 1976, 7-8 June 1976).

The station groups calculated from intrinsic species abundance values were similar to station groups derived from the extrinsic parameters that define the extent and magnitude of the dredged material disposal. The extrinsic data included U.S. Army Corps of Engineers records on the disposal operations, observations of predisposal and postdisposal bathymetry, and textural analysis of predisposal and postdisposal sediments.

The stations exposed to direct disposal of dredged material had significantly higher diversity and evenness values and significantly lower density of macrofauna when compared to unaffected stations. The significant differences in diversity and evenness persisted for at least eight months after disposal and the significant difference in density of macrofauna persisted for the duration of the sampling program (10 months after disposal). There was also a significant reduction in the
abundance of 11 of the 33 most abundant species at stations exposed to dredged material disposal when compared to unaffected stations.

The effects of dredged material disposal on benthos was probably related to direct burial of benthos and changes in sediment chracteristics and not increased turbidity from disposal operations or introduction of pollutants or organic matter.

Repopulation of benthos into the affected area was probably accomplished primarily by benthos burrowing up through the dredged material or migrating into the area and, to a lesser extent, by reproduction and recruitment of benthos from outside the affected area. There was very little evidence for transportation of benthos to the experimental disposal site via dredged material.

PREFACE

This project was part of the Dredged Material Research Program (DMRP) planned and conducted for the Office, Chief of Engineers, and was authorized by Congress as part of the River and Harbor Act of 1970 [Public Law 9l-611, Section 123 (i)]. The objective of the DMRP is to "provide through research - definitive information of the environmental impact of dredging and dredged material disposal operations and to develop technically satisfactory, environmentally compatible, and economically feasible dredging and disposal alternatives, including consideration of dredged material as a manageable resource" (U.S. Army Engineer Waterways Experiment Station, 1973).

This is the final report for Contracts DACW57-75-C-0137 (1 October 1974 to 1 September 1975) and DACW57-76-C-0092 (1 September 1975 to 1 January 1977). The two contracts were administered by U.S. Army Engineer District, Portland.

Dr. Andrew G. Carey, Jr., was the principal investigator and Dr. Michael D. Richardson was the project manager for both contracts at Oregon State University. Mr. Charles G. Boone was the site manager; Mr. Stephen P. Cobb was the site coordinator; and Dr. Robert M. Engler was the project manager for both contracts at the Environmental Resources Division of the Environmental Effects Laboratory, Waterways Experiment Station (WES).

The authors wish to acknowledge the help of personnel at the Portland District Office for providing information on previous dredged disposal activity in the Mouth of the Columbia River (MCR) site region and providing the navigation system used during the first contract. Mr. Charles G. Boone and other personnel at WES are also acknowledged for their cooperation during both contract periods.

We would like to thank Captain Anthony R. Loskota and the crew of the R/V CAYUSE for their excellent help in collection of samples. We would also like to thank the following for helping with the field work: Bob Aman, Laura Banks, John Blicksenderfer, Glenn Boone, Kelley Brooks,

Bruce Caldwell, Mike Christian, Dick Dash, Bill Glassley, John Hunter, Dave Kravitz, Wayne Laroche, Joe Lee, Larie Myers, Greg Murray, Robin Orans, Dave Plowman, Kenneth Stuart, Herb Tanner, Eugene Ruff, Richard Williams, and Paul Yoskioka.

We acknowledge the following for helping with part-time sorting of benthic samples: Bruce Caldwell, Mike Christian, John Hunter, Wayne Laroche, Chris Marlow, Greg Murray, Brian Oliver, and Barbara Sullivan.

The computer programs were written and run by Cleo Adams and Karla Wald. The sediment samples were analyzed by Richard Roberts at the University of Washington. Discussions with Drs. Joe S. Craeger, William Glassley, and Richard W. Sternberg were invaluable with regard to geological and hydrographic data.

Several taxonomists donated their valuable time to confirm identifications of invertebrates. They included Eric Anderson (California Academy of Science, Ophiuroidea), Thomas Bowman (U.S. National Museum, Isopoda), James Carlton (University of California, Davis, Mollusca) Robert Carney (Oregon State University, Holothuroidea), Kristian Fauchald (Allan Hancock Foundation, Polychaeta), Dale Kisker (University of Washington, Pelecypoda), Louis Kornicker (U.S. National Museum, Ostracoda), Michael Kyte (University of Washington, Ophiuroidea), Gary MacDonald (University California, Santa Cruz, Gastropoda), James McLean (L.A. County Museum, Gastropoda), and James Sutton (California Academy of Science, Pelecypoda).

This report would have been impossible without the excellent work of six full-time Research Assistants. They all participated in field work and sorted benthic samples. Beverly Buchanan was responsible for beam trawl samples and identified the Mysidacea, Euphausiacea, Decapoda, Cirripedia and several other groups. Allan Fukuyama identified the Mollusca. Valerie Hironaka was responsible for biomass determination and identified the Echinodermata. Howard Jones maintained sampling equipment and identified the Polychaeta. Michael Kravitz identified Polychaeta. Gertrude Margules was responsible for meiofaunal work and identified Nematoda, Ostracoda and Isopoda. All six helped with the proparation of this final report.

The Directors of WES during the preparation of this report were COL. G.H. Hilt, CE., and COL. J.L. Cannon, CE. Technical Director at WES was Mr. F.R. Brown.
Page
SUMMARY 1
PREFACE 5
LIST OF TABLES 9
LIST OF FIGURES 12
PART I: INTRODUCTION 15
Background 15
Objectives 16
Literature Survey 17
PART II: DESCRIPTION OF STUDY AREA 21
Regional Setting 21
History of Dredged Material Disposal 24
PART III: MATERIALS AND METHODS 27
Sampling Procedures 27
Sampling Cruises 29
Laboratory Procedures 52
Data Analysis 60
PART IV: RESULTS 67
General 67
Pilot Survey 68
Within Station and Between Station Variability 69
Areal Baseline 74
Seasonal Baseline 126
Experimental Site G 150
Megafaunal Survey 168
PART V: DISCUSSION 173
Baseline Studies 173
Experimental Site G 179
PART VI: CONCLUSIONS AND SPECULATIONS 193
Baseline 193
Experimental Site G 195
REFERENCES 203
APPENDIX CI:* STATION DATA 208-A
APPENDIX CII:* SPECIES LISTS 313
APPENDIX CIII: COMMUNITY STRUCTURE 382
Tables C-IA, C-IB, C-IIB, and C-IIC were reproduced on microficheand are enclosed in an envelope attached to the inside of the backcover of this report.
Cl MCR Macrobenthic Station Numbers at Seasonal Baseline Locations 54MCR Macrobenthic Station Numbers at Experimental Site G56
Conversion Factors for Wet Weight to Ash-Free Dry Weight 59
Dominant Species Collected at Replicate Stations 70
C4Comparison of Values of Community Structure Parameters forSingle Replicates, Stations and Total Values for all 20Summed Replicates73
C6Dominant Species in Assemblage A80
C7Dominant Species at Station Group A_{1}82Dominant Species at Station Group A_{2}83
Dominant Species at Station Group A_{3} 85
Dominant Species at Station Group A_{4} 87
Dominant Species in Assemblage B 89
Dominant Species at Station Group B_{1} 91
Cl3 Dominant Species at Station Group B_{2} 92
Cl4 Dominant Species in Assemblage C 94
C15 Dominant Species in Assemblage D 96C16
Dominant Species at Station Group D_{1} 97
C17 Dominant Species at Station Group D_{2} 99
C18 Dominant Species at Station Group D_{3} 101
C19
Dominant Species in Assemblage E 102C20C21C22
Species Group 1 104
Species Group 2 108
Species Group 3 108
C23
Species Group 4 110
C24 Species Group 5 110C25C26C27
Species Group 6 111
Species Group 7 112
Species Group 8 112
C28 Species Group 9 116
C29 Species Group 10 116

LIST OF TABLES

C44
Comparison of Values of Community Structure ParametersBetween the Two Extrinsically Derived Station GroupsUsing a Mann-Whitney U Test, Experimental Site G (April1976)187
C45 Comparison of Values of Community Structure ParametersC47Between the Two Extrinsically Derived Station GroupsUsing a Mann Whitney U Test, Experimental Site G(June 1976)187
C46
C46 A Summary of Significant Seasonal or Station Differences in Abundance of 33 Species at or Near Experimental Site G 189
Dominant Species Found in the Dredged Area 192

LIST OF FIGURES

No.
17 Locations of Macrofaunal Stations Near Experimental Site G for October 1975 (C7510E) 46 Locations of Megafaunal Stations for October 1975 (C7510E)47
Locations of Macrofaunal Stations for January 1976 (C7601D) 48
Locations of Macrofaunal Stations Near Experimental Site G for January 1976 (C7601D) 49
Locations of Macrofaunal Stations Near Experimental Site G for April 1976 (C7604B) 50
Locations of Macrofaunal Stations Near ExperimentalSite G for June 1976 (C7606B)51
Location of 26 Seasonal Baseline Stations 53
Location of 23 Experimental Site G Stations 55
Dissimilarity Values Between Four Replicate Stations ($46^{\circ} 11.5^{\prime} \mathrm{N}, 124^{\circ} 06.5^{\prime} \mathrm{W}$) 72
Dendrogram of Dissimilarity Between Macrofaunal Stations-Areal Baseline 76
Location of Benthic Assemblages and Station Groups inAreal Baseline I77
Location of Benthic Assemblages and Station Group in Areal Baseline II 78Dendrogram of Dissimilarity Between Species-ArealBaseline105
Distribution of Maldane sarsi (individuals $/ \mathrm{m}^{2}$) 107
Distribution of Lumbrineris luti I (individuals $/ \mathrm{m}^{2}$) 113
Distribution of Lumbrineris luti II (individuals $/ \mathrm{m}^{2}$) 114
Distribution of Chaetozone setosa I (individuals $/ \mathrm{m}^{2}$) 120
Distribution of Chaetozone setosa II (individuals $/ \mathrm{m}^{2}$) 121
Distribution of Magelona sacculata I (individuals $/ \mathrm{m}^{2}$) 122
Distribution of Magelona sacculata II (individuals $/ \mathrm{m}^{2}$) 123

No.	
37	Species Group Constancy at Station Groups (i.e. "Cell
	Density") Based on Station-Species Classification \cdot

PART I: INTRODUCTION

Background

1. This project was part of the Dredged Material Research Program (DMRP) planned and conducted for the Office, Chief of Engineers, and was authorized by Congress as part of the River and Harbor Act of 1970 [Public Law 91-611, Section 123(i)]. The objective of the DMRP is "to provide - through research - definitive information on the environmental impact of dredging and dredged material disposal operations and to develop technically satisfactory, environmentally compatible, and economically feasible dredging and disposal alternatives, including consideration of dredged material as a manageable resource" (U.S. Army Engineer Waterways Experiment Station, 1973).
2. The mouth of the Columbia River (MCR) was one of five regional study sites, where the effects of open-water disposal of dredged material was studied. These field studies were part of Task lA (Aquatic Disposal Field Investigations) of the DMRP. Other field studies were conducted in Lake Erie near Ashtabula, Ohio; Eatons Neck in Long Island Sound; in the Gulf of Mexico off Galveston, Texas; and in Elliott Bay, Puget Sound, Washington.
3. This study, designated as work unit 1A07C, was one of five projects being conducted in the MCR study site region. Other work units included studies of bathymetry, bottom sediments, water chemistry, sediment chemistry, phytoplankton, zooplankton, and fisheries. The objectives of the MCR study were to identify and determine the significance of physical, chemical, and biological factors that govern the rate by
which openwater disposal sites are colonized by benthic communities.
4. The study of benthic assemblages in the MCR study site region was divided into two phases. Phase I (Contract DACW57-75-C-0137) included collection of baseline information of benthic assemblages, literature survey, gear evaluation, and planning for the controlled disposal experiment. Phase II (Contract DACW57-76-C-0092) included the controlled disposal experiment and continued collection of seasonal baseline information.

objectives

5. This contract research was divided into two funding periods with different objectives. The objectives of Phase I "A Study of Benthic Baseline Assemblages in the MCR Disposal Site Area" were as follows:
a. To conduct a literature survey on existing data relating to benthic community classification and structure and to spatial and temporal distribution of species within the study site area and within the regional area of concern (Oregon-Washington continental shelf).
b. To compare the different types of sampling gear with respect to sampling efficiency and effectiveness and to estimate the sampling error of the quantitative collection devices along with the number of replicates necessary to ensure statistically valid results.
C. To collect baselinc information on benthic communities in the MCR disposal site region on a spatial and temporal basis. The baseline information included community structure (diversity, biomass, numerical abundance), community classification, and the biology and distribution of numerically dominant species.
d. To select a site for the dredged material disposal experiment for Phase II.
6. The objects of Phase II "An Investigation of the Effects of Open-Water Dredged Material Disposal on Neritic Benthic Assemblages off the Mouth of the Columbia River," were as follows:
a. To define the effects of dredged material disposal on benthic communities.
b. To estimate the recolonization rate and pattern of the affected bottom by benthic organisms.
c. To define the important factors affecting benthic recolonization.
7. No attempts have been made by the authors to separate Phases I and Phase II in this final report.

Literature Survey

8. The following is a brief summary of benthic studies of the Oregon-Washington continental shelf. Within the last four years, two excellent publications on this region have been compiled. The first, The Columbia River Estuary and Adjacent Ocean Waters, Bioenvironmental Studies edited by A.T. Pruter and D.L. Alverson (1972) includes 33 articles on the physical, chemical, and biological aspects of this region with an emphasis on radionuclide studies. The second, Oceanography of the Nearshore Coastal Waters of the Pacific Northwest Relating to Possible Pollution, Volumes I and II (1971) written by W.C. Renfro, et al., includes 21 chapters, 8 appendices, and a bibliography of more than 3100 entries. Of particular interest in the second publication is chapter 21, "The Nearshore Coastal Ecosystem: an Overview," and Appendix 8, "Annotated Checklist of Plants and Animals."
9. No effort was made in this literature survey to repeat these works. Also studies of demersal fisheries, unicellular organisms, or papers dealing with taxonomic or autecological problems were not included. Intertidal and estuarine papers were also excluded as well as studies in Puget Sound.
10. Prior to 1960 almost no benthic studies had been conducted on the Oregon-Washington continental shelf. The only exceptions were an occasional trawl or dredge sample collected by an expedition on its way to sample other areas.
11. Since 1960, two groups have been active in studying the macrobenthos of this area, Oregon State University and University of Washington. Several other groups including the National Marine Fisheries Service
and the Oregon Fish Commission have extensive collections of demersal fishes, but their studies were not included in this review.
12. Oregon State University has collected extensive benthic samples on the central Oregon continental shelf since 1962. Initial infaunal studies off the Pacific Northwest concentrated on a transect line of stations west of Newport, Oregon. The sampling encompasses broad environmental gradients across the continental shelf and down the continental slope onto a nearshore upper abyssal plain (Carey, 1965). A semiquantitative anchor-box dredge obtained large volume samples suitable for deep-sea benthic research from a variety of substrate types (Carey and Hancock, 1965). Ninety-two quantitative samples were collected from twenty-six stations; six stations were located across the continental shelf at depths of $30,50,100,150,175$, and 200 m .
13. Abundance of infauna increased across the shelf; the largest numerical density of 3712 individuals $/ \mathrm{m}^{2}$ and biomass of 46.22 g weight/ m^{2} occurred at the edge of the continental shelf at a depth of 200 m (Carey, 1972). At the shallowest station 3.1 km from shore, arthropods accounted for over 50 percent of the fauna; while at the edge of the shelf, 43.7 km from shore, polychaete worms increased in relative abundance to become the predominant major taxonomic group at 48 percent. Inshore the sediments were well-sorted fine sands, while at 200-m depth, the sediments included more fines and were silty-sands.
14. Other infaunal studies were undertaken on the central Oregon continental shelf to determine the relative effects of depth and sediment type on the faunal composition and community structure (Bertrand, 1971; Bertrand and Carey, unpublished manuscript). One hundred and sixty $0.1-\mathrm{m}^{2}$ Smith-McIntyre grab samples were taken at eight seasonal stations between 75- and 450-m depth. Five replicate grabs at each station were analyzed for macrofauna ($>1.0 \mathrm{~mm}$ in size) per season per station. No seasonal variation was found in either infaunal composition in total species, numbers, or biomass. Average faunal abundance for all stations were 597 individuals $/ \mathrm{m}^{2}$ and 36.5 g wet weight $/ \mathrm{m}^{2}$. These values were lower than those reported for the Southern Californian continental shelf and for

New England waters. Four species groups were defined by factor analysis; these were correlated with glauconite sand, beach sand, sandy silt, and silty sand.
15. The macro-epifauna ($>1.3 \mathrm{~cm}$) were collected at four stations across the central Oregon continental shelf along the Newport transect line at depths of $50,100,150$, and 200 m (Carey, 1972). The macroepibenthos changed from a sparse molluscan assemblage on the inner shelf to one dominated by numerous echinoderms and arthropoda at the shelf edge. The greatest abundance of epifauna was at the shelf edge; a continued increase across the shelf was observed.
16. Benthic communities on the Washington continental shelf were studied by Lie (1969), Lie and Kisker (1970), and Lie and Kelley (1970). Lie collected replicate $0.2-\mathrm{m}^{2}$ Van Veen grabs from 48 stations (mostly three per station) along the Washington coast and in the Juan de Fuca Strait, in the summers of 1967 and 1968. The samples were sieved throu,h a $1.00-\mathrm{mm}$ screen and the Crustacean, Lammellibranchia, and Echinodermata were identified and counted. Wet weights for all taxonomic groups were determined. The mean ash-free dry weight was $1.92 \mathrm{~g} / \mathrm{m}^{2}$ (Lie, 1969). The inshore sand stations were dominated by small cru: 'aceans with a life span of about one year and had a mean ash-free dry .. yht of $1.351 \mathrm{~g} / \mathrm{m}^{2}$. Two other groups of stations located further offshore were dominated by polychaetes and echinoderms with life spans of two years or more and had mean ash-free dry weights of 2.272 and $2.335 \mathrm{~g} / \mathrm{m}^{2}$.
17. Lie and Kelley (1970) used classification and ordination techniques to determine the species and station patterns for ull 48 stations. Techniques included Kendall's rank correlation coefficient, Fager's recurrent group analysis, and factor analysis (principal component analysis with a varimax rotation). Using these techniques, Lie and Kelley extracted three station groups and six species groups from the data. The factor analysis, which used abundance data to group both species and stations, was preferred by Lie and Kelley to Kendall's rank correlation and Fager's recurrent group analysis, which only used presence and absence data. All techniques yielded similar results. Although the first five eigenvalues accounted for greater than 50 percent of the
total variance in the factor analysis of station groups and species groups, no attempt was made to interpret the resulting patterns.
18. Lie and Kisker (1970) determined the species composition and structure of three benthic communities extracted from Lie's previous paper. Diversity values were calculated only on the Crustacean, Lamellibranchia, and Echinodermata data. The deep water mud-bottom community had a mean H (Brillouin-diversity function - see methods in this paper) value of 2.9 with a range of 1.8 to 4.0 . The intermediate depth sandbottom community had a mean (H) diversity value of 2.6 with a range of 0.9 to 3.6 . The shallow water sand-bottom community had a mean (H) diversity value of 2.0 with a range of 0.1 to 3.6 . From the data presented in the paper, the diversity values are related to both species richness and evenness components of diversity. The lower diversity values in the shallow water sand-bottom community were attributed by Lie and Kelley to the physical stress of wave action.

Regional Setting

19. The study area is located adjacent to the mouth of the Columbia River on the Oregon-Washington continental shelf (Figure C1). The Atomic Energy Commission (AEC), because of its responsibility for monitoring the effects of radioactive discharge from nine nuclear reactors built 600 km above the mouth of the Columbia River at Richland, Washington, has sponsored extensive research of the Oregon-Washington continental shelf. A comprehensive review of this AEC sponsored research was presented in Pruter and Alverson (1972). The Corps of Engineers has sponsored extensive research on the MCR aquatic disposal site as part of the Dredged Material Research Program. The results of these studies will be published as appendices to a summary site report.
20. The study area is bounded by latitude $46^{\circ} 19^{\prime}$ on the north and $46^{\circ} 06^{\prime}$ on the south and lies between the $10-$ and $100-\mathrm{m}$ contours. Water depths supplied by the University of Washington are shown in Figure C2.
21. The dominant hydrographic feature in the study area is the Columbia River. The average river discharge is $6.0 \times 10^{8} \mathrm{~m}^{3} /$ day with a spring maximum of $2.9 \times 10^{9} \mathrm{~m}^{3} /$ day and a fall minimum of $1.6 \times 10^{8} \mathrm{~m}^{3} /$ day (Barnes ct al., 1972). The Columbia River plume influences an area from 40° to $49^{\circ} \mathrm{N}$ and 600 km offshore (Barnes et al., 1972). Reduction of salinities near the mouth of the Columbia River are generally restricted to the upper 15 m of the water column. Salinities below 15 m vary little from 33 to 34% (Duxbury, 1972).
22. Surface current direction and speed in the study site are predominantly controlled by large-scale regional weather systems, the Columbia River flow, and tides. The general current direction is toward the shore during the winter with downwelling occurring along the coast. During the summer the surface currents set offshore and upwelling occurs. The Columbia River plume moves north and inshore under the influence of southerly winds in the winter and moves south and offshore under the influence of northerly winds in the summer (Barnes et al., 1972). Bottom

Figure Cl. Location of the Study Area at the Mouth of the Columbia River

Figure C2. Depth Contours (meters) for MCR Region.
currents flow northward at 1 to $2 \mathrm{~km} /$ day in depths of $40-100 \mathrm{~m}$. The bottom currents inshore of 40 m and near the Columbia River are predominately toward the mouth of the Columbia River (Barnes et al., 1972).
23. Tides at the mouth of the Columbia River are mixed semidiurnal with a mean tidal range of 2.0 m . Extreme low water has been estimated at 0.9 m below mean lower low water and extreme high water at 3.5 m above mean lower low water (Neal, 1972).
24. McManus (1972) divided the continental shelf near the Columbia River mouth into six sedimentological units: a nearshore sand deposit north of the Columbia to depths of 55 m ; an inshore sand wedge extending south of the Columbia River to depths of 73 m ; an outer-shelf band of silty sand both north and south of the Columbia River; a shelf-break band of relict sand; a rough topography of relict sediment southwest of the Columbia River; and a deposit of silty sediment which trends northwesterly along the outer shelf from the mouth of the Columbia River. A more detailed analysis of sediment texture and mineralogy of sediments off the mouth of the Columbia River is presented by Sternberg et al. 1977 in Appendix A of this series.

History of Dredged Material Disposal

25. Maintenance dredging of the Columbia River entrance began in the 1880's to allow large ships to safely enter the river. In 1895 a permanent south jetty (7.2 km long) was built. The south jetty was extended to 10.6 km in 1913, and a north jetty (3.8 km long) was built in 1917. Lockett (1963) reported that $11.5 \times 10^{6} \mathrm{~m}^{3}$ of sediment was dredged from the entrance of the mouth of the Columbia River between 1939 and 1955. In 1956 the Corps of Engineers increased the depth of the entrance channel to 14.6 m and currently maintains this channel depth by annual dredging.
26. Since 1956 the Corps of Engineers have used four open-water areas to deposit material dredged from the channel (Figure C3). In addition disposal area D is used if weather prohibits open-water disposal. The most active disposal site is B where $24.3 \times 10^{6} \mathrm{~m}^{3}$ of dredged material was deposited from 1957 to 1975. In that same period disposal

Figure C3. Location of Disposal Sites A, B, D, E, F and Experimental Site G.
site A received $1.3 \times 10^{6} \mathrm{~m}^{3}$ of dredged material; disposal site $\mathrm{D}, 9.6 \mathrm{x}$ $10^{6} \mathrm{~m}^{3}$; disposal site E, $4.5 \times 10^{6} \mathrm{~m}^{3}$; and disposal site $\mathrm{F}, 0.5 \times 10^{6} \mathrm{~m}^{3}$. Experimental site G received $0.45 \times 10^{6} \mathrm{~m}^{3}$ dredged material between 9 July 1975 and 27 August 1975.

Sampling Procedures

27. All samples were collected from the Oregon State research vessel CAYUSE. The $24.4-\mathrm{m}(80-f t)$ long R / V CAYUSE is equipped with a main working winch with a $9.53 \mathrm{~mm}(3 / 8-i n)$ wire and a smaller hydrographic winch with $4.76-\mathrm{mm}(3 / 16$-in) wire. Samples were collected with a $0.1-\mathrm{m}^{2}$ Smith-McIntyre grab, and a $3-\mathrm{m}$-wide metered beam trawl. The Smith-McIntyre grab and beam trawl were described in Carey and Heyamoto (1972). Station locations were determined by a Del Norte navigation system or Loran-A and radar fixes.
28. The Smith-McIntyre grab, which samples a surface area of $0.1 \mathrm{~m}^{2}$, was used to obtain samples of macrofauna and sediment. The surface of the sediment was relatively undisturbed and the sediment volumes for replicate grabs within a single station were nearly equal (Appendix CI). Leakage from the Smith-McIntyre grab was negligible because the sampling gear was well maintained. Grabs were taken using the hydrographic winch. Two metal screens ($0.42-\mathrm{mm}$ apertures) allowed water to pass through the grab during descent ($50 \mathrm{~m} / \mathrm{min}$) and reduced the shock wave as it neared the bottom. During ascent ($50 \mathrm{~m} / \mathrm{min}$), the two flaps closed over the screens to eliminate mixing of the sediment surface.
29. The grab was placed on a specially designed cradle after retrieval. One screen door was removed and the contents of the grab were inspected to determine whether the grab penetrated satisfactorily into the substrate. The depth of penetration was then measured to the nearest millimeter. The sediment type was crudely determined by touch, and any important observations about the sample were noted.
30. The contents of Smith-McIntyre grabs obtained for macrofauna analysis were washed into an open 38-l (l0-gal) plastic container underneath the grab cradle. The cradle was so constructed that all the contents of the grab and the water used to wash the grab entered the plastic container without loss. The grab sample was then washed through a metal
screen with $1.00-\mathrm{mm}$ aperture. The material retained on the screen was transferred to plastic ontainers and preserved in 10 percent formalin buffered with $\mathrm{NaH}_{2} \mathrm{BO}_{3}$.
31. If the grab was to be used for sediment analysis, the upper l-cm of surface of the grab contents was removed by hand, placed in a labeled plastic bag, and frozen. The remaining contents of the grab were discarded. Frozen sediment samples were sent to the University of Washington, Seattle, for analysis.
32. Meiobenthic samples ($>62 \mu$) were obtained with a $0.1-\mathrm{m}^{2}$ SmithMcIntyre grab or a multiple cover on the first two cruises. Because of the long sorting time (mean, 45-hr/sample) and problems with identification, the meiobenthic ($>62 \mu$) sampling was not continued. One grab per station on subsequent cruises was washed through a 0.50 -mm screen in order to capture juvenile macrofauna. The $0.50-\mathrm{mm}$ samples were rescreened in the laboratory into two fractions, the 0.50 to $1.00-\mathrm{mm}$ and the $1.00-\mathrm{mm}$ fraction. The 1.00 mm fractions were treated as macrofauna samples.
33. The 3 -m-wide metered beam trawl was used to sample the megafauna. The trawl net was attached to a rigid frame $3-\mathrm{m}$ wide and $1-\mathrm{m}$ high. The net was a $3-\mathrm{m}$ otter trawl with $3.81-\mathrm{cm}$ ($11 / 2$-in) stretch mesh and a $1.27-\mathrm{cm}(1 / 2-i n)$ stretch mesh liner. The distance covered over the bottom was measured with odometer wheels attached to each side of the frame. The beam trawl was towed with the $9.53-\mathrm{mm}$ ($3 / 8-\mathrm{in}$) wire of the main working winch on the R/V CAYUSE. After the wheel revolution counters were read, the trawl was lowered at $35 \mathrm{~m} / \mathrm{min}$, while the ship steamed forward at $3.7 \mathrm{~km} / \mathrm{hr}$ (2.0-knots). The trawl was towed across the bottom for 30 min . (scope ratio $4: 1$) and was retrieved at $35 \mathrm{~m} / \mathrm{min}$ (Carey and Heyamoto, 1972). The wheel revolution counter was read and the sample was removed from the net. Larger fish and Cancer magister were identified, measured, and returned to the sea. The remainder of the catch was placed in 38-l (l0-gal) plastic containers and preserved in 10 percent formalin buffered with $\mathrm{NaH}_{2} \mathrm{BO}_{3}$.
34. It was convenient to divide the samples obtained during this contract period into six categories: pilot samples, areal baseline
samples, seasonal baseline samples, experimental site G samples, sampling efficiency samples, and megafauna samples. In many cases a sample was included in more than one category. For example, the samples used for control stations for experimental site G are also part of the seasonal baseline.
35. Additional data were obtained at each station on all cruises except the pilot cruise. Surface water temperature was determined with a stem thermometer. The wave height and direction, cloud type, and percent cloud cover were estimated. The wind direction and velocity, air temperature, and barometric pressure were measured. The time, latitude, longitude, and bottom depth were obtained for each sample. The length of tow along with location was determined for each beam trawl.

Sampling Cruises

36. During the contract period (1 October 1974 to 31 December 1977), 12 sampling cruises were attempted. Ten cruises were successful and two were terminated early because of bad weather. The 12 sampling cruises are described in the following paragraphs. C7409C2 (October 1-2, 1974)
37. The first cruise was a pilot survey. The results of the pilot survey and the data on the distribution of sediments provided by the University of Washington were used to plan subsequent sampling strategies. A total of forty-six $0.1-\mathrm{m}^{2}$ Smith-McIntyre grab samples were obtained, one at each station. Twenty-one stations were located in the vicinity of dredged material disposal site B (Figure C4) and 25 stations were located in the surrounding area (Figure C5).

C7411F (November $18-24,1974$)
38. The second sampling cruise was aborted because of storm and gale conditions in the study area.
C7412B (December 4-8, 1974)
39. The third sampling cruise obtained samples for the areal baseline and sampling efficiency study. A total of $3050.1-\mathrm{m}^{2}$ Smith-McIntyre

Figure C4. Locations of Macrofaunal Stations for October 1974 (C7409C) I.

Figure C5. Locations of Macrofaunal Stations for October 1974 (C7409C) II.
grab samples for macrofauna were obtained, 5 per station, at 57 stations and 20 per station at 1 station. Twenty-two of the Smith-McIntyre stations were located in the vicinity of disposal site B and the remaining 35 stations were located in the surrounding areas. The 20 replicate samples taken at one station were located near a site which later became experimental site G. Fifty-eight sediment samples (one per station) were also obtained and sent to the University of Washington. Locations for these samples plus those taken in January 1975 (C7501D) are shown in Figures C6 and C7. Metered beam trawls were obtained at two stations (two per station) located near experimental site G (Figure C8). C7501D (January 19-25, 1975)
40. The fourth sampling cruise completed the areal baseline. A total of $2500.1-\mathrm{m}^{2}$ Smith-McIntyre grabs were obtained for macrofaunal work, 5 per station at 50 stations. Twelve of the stations were located near disposal site B; 12 stations were located in the surrounding areas; and 15 stations were located in other disposal areas (A, E, and F) or occupied in common with MCR Chemical Baseline Studies. The remaining 11 stations were not sorted because they were located out of the immediate area of interest. Fifty sediment samples were also obtained fone per station) and sent to the University of Washington. Station locations are shown in Figures C6 and C7. C7504B (April 18-23, 1975)
41. The fifth sampling cruise began the seasonal baseline work. Twenty-six locations were chosen to represent the different assemblages found in the MCR disposal site region. Locations were chosen so that at least two stations were located in each assemblage. The seasonal stations also included all the disposal sites (A, B, E, and F), the experimental site (G), and control stations for the experimental site G (Figure C9). Six replicate Smith-McIntyre grabs were obtained at each of 26 stations: 5 for macrofauna (4 replicates at each station were screened through a 1.00 mun screen and the fifth replicate was screened through a $0.50-\mathrm{mm}$ screen) and one for sediment. Beam trawls were obtained at six stations (two trawls/ station) for larger megafauna. All beam trawl stations were located south of experimental site G (Figure Clo). Poor weather conditions prevented collection of beam trawls at eight additional stations.

Figure C6. Locations of Macrofaunal Stations for December 1974 (C7412B) and January 1975 (C7501D) I

Figure C7. Locations of Macrofaunal Stations for December 1974 (C7412B) and January 1975 (C7501D) II

Figure C8. Locations of Megafaunal Stations for December 1974 (C7412B) and January 1975 (C7501D)

42. On the sixth sampling cruise, the seasonal baseline sampling was continued, experimental site G and the area that was to be dredged were sampled. Five replicate $0.1-\mathrm{m}^{2}$ Smith-McIntyre grab samples were obtained at each of 37 stations (185 grabs) for macrofauna (four, 1.00 mm ; one, 0.50 mm), and one replicate grab sample for sediment (37 grabs). Locations for 26 seasonal stations were the same as on the April 1975 cruise (C7504B). Five stations including one seasonal station were located in experimental site G. The remaining five stations were located in the Columbia River entrance channel in the area that was to be dredged. Twenty-two metered beam trawls were also obtained (two per station at nine stations, one per station at four stations). Station locations for Smith-McIntyre and beam trawl samples are shown in Figures Cll and Cl2 respectively. C7508E (August 25-29, 1975)
43. No biological samples were obtained on this cruise because of bad weather. Twenty-seven sediment samples were collected and sent to the University of Washington, Seattle, for analysis. C7509E (September 11-16, 1975)
44. On the eighth sampling cruise the seasonal baseline sampling was continued and experimental site G was sampled after the disposal operation. Five replicate $0.1-\mathrm{m}^{2}$ Smith-McIntyre grab samples were obtained at each of 50 stations (250 grabs) for macrofauna (four, 1.00 mm ; one, 0.50 mm), and one grab sample was obtained for sediment (50 grabs). Locations for the 26 scasonal stations were the same as on the April 1975 cruise (C7504B). An additional 24 stations were located in or near experimental site G. Station locations are shown in Figures Cl3 and Cl4. Twenty-seven metered beam trawls were obtained at 14 stations. Of the 27 beam trawls, 10 were located near experimental site G, 4 south of experimental site G, 6 near disposal sites B and E and 6 further offshore as part of the seasonal studies. Beam trawl stations are shown in Figure Cl5. In addition to the biological samples, 22 sediment samples were obtained in experimental site G at stations not occupied for biological work.

C7510E (October 20-25, 1975)
45. On the ninth sampling sampling cruise, experimental site G and

Figure Cll. Locations of Macrofauna Stations for June 1975 (C7506C)

Figure Cl2. Locations of Megafaunal Stations for June 1975 (C7506C)

Figure Cl3. Locations of Macrofaunal Stations for September 1975 (C7509E)

Figure C15. Locations of Megafaunal Stations for September 1975 (C7509E)

Control stations for experimental site G were sampled. Five replicate $0.1-m^{2}$ Smith-McIntyre grab samples were obtained at each of 31 stations for macrofauna (four, 1.00 mm ; one, 0.50 mm), and one sediment sample was obtained from each station. Station locations are shown in Figures cl6 and Cl7. Eight metered beam trawl samples were also obtained in or near experimental site G (Figure Cl8).

C7601D (January 3-10, 1976)
46. On the tenth sampling cruise, the seasonal baseline sampling was completed and sampling experimental site G was continued. Five replicate 0.1-m ${ }^{2}$ Smith-McIntyre grab samples were obtained from 43 stations for macrofauna (four, 1.00 mm ; one, 0.50 mm). Locations for these samples were the same as on the September 1975 cruise (C7509E) (Figures C19 and C20). Two stations in the experimental site and five seasonal stations were not sampled because of poor weather conditions. One sediment sample was obtained from each station. No beam trawl samples were obtained because of adverse weather conditions.

C7604B (April 19-20, 1976)
47. On the eleventh sampling cruise, experimental site G and control stations for experimental site G were sampled. Five replicate $0.1 \mathrm{~m}^{2}$ Smith-McIntyre grab samples were obtained from each of 12 stations for macrofauna (four, 1.00 mm ; one, 0.50 mm). One sediment sample was also obtained from each station (Figure C21).

C7606B (June 7-8, 1976)
48. On the twelfth sampling cruise, the same 12 stations occupied on the April 1976 cruise (C7604B) were sampled (Figure C22). Five replicate $0.1-\mathrm{m}^{2}$ Smith-McIntyre grab samples were obtained from each of 12 stations for macrofauna (four, 1.00 mm ; one, 0.50 mm). One sediment sample was also obtained from each station. This cruise completed the field work for this contract.

General Information

49. Station locations and grab number for every $0.1 \mathrm{~m}^{2}$ SmithMcIntyre grab sample are presented in Appendix CI. Also included are cruise number, time, water depth, sediment volume for biological samples,

Figure Cl7. Locations of Macrofaunal Stations Near Experimental Site G for October 1975 (C7510E)
 figure Cl8. Locations of Megafaunal Stations for October $19 / 5$ (C/blOE).

Figure Cl9. Locations of Macrofaunal Stations for January 1976 (C7601D).

Figure C21. Locations of Macrofaunal Stations Near Experimental Site G for April 1976 (C7601D)

Figure C22. Locations of Macrofaunal Stations Near Experimental Site G for June 1976 (C7606B)
sediment type, screen size for biological samples, and comments. Water depths were not corrected for tides. Sediment data was provided by the University of Washington. Sediment volume was calculated using the relationship between depth of penetration and sediment volume. Station locations for metered beam trawl are also present in Appendix CI.
50. Station locations were determined by a Del Norte navigation system where possible. Stations were considered to be circles with a radius of approximately 100 m . The reported accuracy of the Del Norte system is one meter. The Del Norte system was not available on cruises C7409C and C7412B. Loran-A and radar fixes were used to determine locations on these cruises. The accuracy of the Loran A and radar fixes near the mouth of the Columbia River was approximately 250 m . On C7501D, 28 of the 50 stations were located by Del Norte, the remaining 22 stations were located by Loran-A and radar. All stations except those farthest offshore were located by Del Norte on cruises C7504B, C7506C, C7508E, C7601A, C7604B, and C7606B.
51. In order to facilitate the presentation and interpretation of the results of 2,040 samples obtained at 366 stations, a new set of numbers were assigned to stations that were occupied on more than one cruise. The new location numbers designated locations for seasonal baseline stations, and stations located in experimental site G. Station designations for the pilot study and the seasonal baseline remained the same. The 26 seasonal stations were part of the R-series (l-26). The locations are presented in Figure C23 and Table Cl. Stations located in experimental site G were part of the K -series (1-40). The number designations are the same as those used by the University of Washington (Figure C24). Station numbers that correspond to these locations are presented in Table C2.

Laboratory Procedures

Megafauna samples (beam trawls)
52. All beam trawl samples were sorted into major taxonomic groups by eye. The fish were identified, measured, and returned to 10 percent

Figure C23. Location of 26 Seasonal Baseline Stations

品蛞
MCR Macrobenthic Station Numbers
at Seasonal Baseline Locations．

弱
$48^{\circ} 122^{\prime \prime}$

Table C2

Longitude (W)		Station Number					
		June 1975	Sept 1975	Oct 1975	Jan 1976	April 1976	June 1976
124°	06.33'	-	223	-	-	-	-
124°	05.65	-	228	-	-	-	-
124°	06.50 ${ }^{\circ}$	-	234	308	330	367	388
124°	$05.98{ }^{1}$	-	232	-	-	-	-
124°	05.76 ${ }^{\prime}$	-	230	310	332	368	391
124°	06.22 ${ }^{\prime}$	-	238	-	-	-	-
124°	06.02 ${ }^{\prime}$	-	246	312	-	369	386
124°	05.88 ${ }^{\prime}$	-	248	313	335	370	387
124°	05.58 ${ }^{\text {' }}$	-	240	-	-	-	-
124°	06.24 ${ }^{\text {' }}$	-	251	315	343	371	385
124°	05.76 ${ }^{\prime}$	-	242	315	336	372	389
124°	05.62^{\prime}	-	241	-	-	-	-
124°	06.36°	-	253	-	-	-	-
124°	06.00	-	256	319	345	373	384
124°	05.77^{\prime}	-	259	-	-	-	-
124°	06.26	-	266	-	-	-	-
124°	05.99^{\prime}	-	264	-	-	-	-
124°	05.66 ${ }^{1}$	-	262	-	-	-	-
124°	06.30'	197	236	-	356	-	-
124°	05.00'	202	268	300	353	374	381
124°	06.00 '	199	249	299	-	378	383
124°	04.00'	204	269	302	352	375	380
124°	03.50'	205	270	303	-	-	-
124°	05.50	201	261	298	354	376	382
124°	06.00'	198	226	-	-	-	-
124°	06.00'	200	267	297	346	377	390

formalin buffered with $\mathrm{NaH}_{2} \mathrm{BO}_{3}$. Invertebrates were sorted into major taxonomic groups and transferred to 70 percent isopropyl alcohol. Macrofauna samples (Smith-McIntyre grabs)
53. All Smith-McIntyre grab samples were transferred to a 70 percent isopropyl alcohol within two weeks after being collected. Samples processed on a $0.50-\mathrm{mm}$ screen were rescreened into two fractions (>1.00 and $1.00-0.50 \mathrm{~mm}$) in the laboratory. The grab samples were then sorted under a Wild M-3 stereomicroscope into major taxa.
54. The screen size, sample volume, debris composition, date sorted, sorting person, sorting time, aliquot (always whole), preservation, and any comments were noted. The number of individuals of each taxonomic group were counted and placed in separate vials.

Identification

55. The responsibility for different taxonomic groups was divided among all personnel at the beginning of the project. They were responsible for the proper identification of that group, contacting the appropriate taxonomist for help when needed, and the study of the biology of dominant species within that group.

Biomass

56. Wet weights for each taxonomic group from the Smith-McIntyre grab samples were determined. The samples that were preserved in 70 percent isopropyl alcohol were blotted on paper towels to remove excess surface moisture. Loss of moisture from animals while blotting results from two processes. First there is a rapid loss of moisture from the surface of the animals, then a slow loss of internal moisture through the surface of the animal. Animals were blotted until moisture was no longer picked up by the paper towel (approximately l-l0 min). The length of time depended on the size of the animal, the number of animals weighed, and the taxonomic group. The methods are described in Weinberg (1971). Wet weights were determined on a 45-type Mettler analytical balance. Mollusks were weighed in their shells; most polychaetes were weighed without tubes; and all animals were cleaned of sediment or other debris. The samples were not burned to obtain ash-free dry weights because study
of the biology of the dominant species ashes is impossible and because of the considerable taxonomic value of the collections. Numerous undescribed species were found.
57. Conversion factors from wet weight to ash-free dry weight were calculated for each taxonomic group. Preserved animals were weighed and placed in an aluminum pan. The sample was dried in a drying oven $\left(65^{\circ} \mathrm{C}\right)$ and placed in a desiccator overnight. The sample and pan were then weighed. This process was repeated until a constant weight was obtained. The sample was then ashed in a muffle furnace for 24 hr at $525^{\circ} \mathrm{C}$. After ashing, the sample was placed in a desiccator for 24 hr and weighed. The conversion factor was calculated by subtraction of the weight of the pan plus ashed remains of the sample from the dry weight of the sample and pan and the division of this difference by the weight of the sample. This process was repeated several times for each taxonomic group. Table C3 presents the conversion factor used to convert wet weights to ash-free dry weights. Also included are the number of values for each taxonomic group and the standard deviation for each mean. All conversion factors except for Decapoda and Isopoda had a standard deviation of less than 20 percent. Decapoda and Isopoda did not contribute significantly to the biomass at any station, therefore ash-free dry weights reported for each station are within 20 percent of the actual values.
Sediment samples
58. All sediment samples in this report were analyzed by the University of Washington. The methods, results, and discussion of these data were included in a final report to the U.S. Army Corps of Engineers (Sternberg et al., 1977). The median diameter (ma_{ϕ}), standard deviation or sorting (O_{ϕ}), first skewness (α_{ϕ}), second skewness ($\alpha_{2 \phi}$) and kurtosis $\left(\beta_{\phi}\right)$ were computed using equations given by Inman (1952). Percentages of sand, silt, and clay for each sediment sample were plotted on a tertiary diagram, and the sediment was characterized by nomenclature proposed by Shepard (1954).

Taxa	Mean	Standard	Deviation	\# Values
Ophiuroidea	0.107	0.012	(11\%)	15
Holothuroidea whole, eviscerated and tails whole, noneviscerated	$\begin{aligned} & 0.132 \\ & 0.050 \end{aligned}$	$\begin{aligned} & 0.027 \\ & 0.008 \end{aligned}$	$\begin{aligned} & (20 \%) \\ & (17 \%) \end{aligned}$	$\begin{aligned} & 9 \\ & 7 \end{aligned}$
Gastropoda	0.077	0.008	(10\%)	25
```Pelecypoda Siliqua patula Acila castrensis Others```	$\begin{aligned} & 0.106 \\ & 0.087 \\ & 0.078 \end{aligned}$	0.007 0.002 0.015	$(68)$ $(28)$ $(198)$	4 4 10
Polychaeta Tubed Untubed	$\begin{aligned} & 0.046 \\ & 0.160 \end{aligned}$	0.008 0.028	(178) $(178)$	15 15
Decapoda	0.144	0.043	(30\%)	29
Cumacea	0.111	0.008	(78)	17
Mysid	0.184	0.021	(118)	19
Isopoda	0.140	0.041	(29\%)	19
Amphipoda	0.136	0.007	(5\%)	17
Nemertea	0.161	0.025	(15\%)	5
Sipunculid*	0.160			
Echiurid*	0.160			

* Conversion factor for polychaeta used.


# Data Analysis 

Baseline (macrofauna)
59. Two different approaches to analysis of benthic data from the areal and seasonal baseline were used. The first approach was classification of species and site groupings (Clifford and Stephenson, 1975). Species were classified according to their patterns of distribution among the sites and sites were classified according to their species content. The second approach was community structure analysis. Each site was characterized by its biotic content (density, biomass, dominant species and diversity). The data were analyzed by programs written for the CDC Cyber-73 computer (Richardson, 1976).
60. The classification analysis consisted of a multioptional set of programs that were used for data reduction and pattern recognition from a species-site data matrix. The programs were divided into four runs. Run I (COORDIN) ordered the original data into a site-species matrix. In the second run (CRUNCH), site-site and species-species resemblance matrices were calculated. Options in CRUNCH included data standardization (none, site, and species), data transformation [none, square root, $\log _{10}$ ( $\mathrm{x}+1$ ), or presence-absence], and choice of resemblance function (Dominance-affinity similarity, Bray-Curtis, Manhattan metric, and Canberra metric dissimilarity). Run III (CLSTR) consisted of seven clustering strategies that were used to group species or sites in the form of a dendrogram. CLSTR was modified from Anderberg (1973) for use on the CDC Cyber. Run IV (SWITCH) reordered the original site-species data matrix into a two-way coincidence table according to the results of the site and species clustering dendrograms. SWITCH was used to indicate the strength of pattern in the data, reallocate misclassified sites and species, and adopt levels of classification.
61. Subjective decisions were required by the investigator at several points in the classification analysis. Since the goals of classification in this report were data reduction and pattern recognition and not probabilistic interpretation of the data structure, subjective decisions seemed appropriate. The authors agree with Boesch (1973) that
the investigator should remain the ultimate arbiter in the classification of ecological data.
62. The subjective decisions including adoption of levels of classification, reallocation of misclassified sites and species, types of data transformation and standardization, and elimination of rare species are discussed in the following paragraphs and under the appropriate sections in the results. Most decisions are based on the goals of the classification procedures (data reduction and pattern recognition), the results of the within station and between station variability study, SWITCH, and the author's past experience with other data sets.
63. Sites were classified using the Bray-Curtis dissimilarity coefficient and the group average sorting strategy. The data were transformed using a square root transformation with no species reduction or standardization. Species were classified using similar techniques except that the rare species were eliminated from the data matrix and the species values were standardized (proportions) after a square root transformation.
64. The Bray-Curtis dissimilarity coefficient was chosen to classify both species and site groups because of its sensitivity to dominance in the site classification and abundance in the species classification.

$$
\begin{equation*}
D_{12}=\frac{\sum_{n}^{n}\left|x_{1 j}-x_{2 j}\right|}{\sum_{\substack{n}}\left(x_{l j}+x_{2 j}\right)} \tag{1}
\end{equation*}
$$

$D_{12}$ is a measure of dissimilarity between site 1 and 2 where $X_{1 j}$ and $X_{2 j}$ are the importance values for the $j$ th species at each station and $n$ is the total number of species found at the two stations.
65. The transpose of the species-site matrix was used for species classification. The Bray-Curtis dissimilarity coefficient is constrained between 0 and 1 where 0 represents no dissimilarity between species or sites and 1 represents complete dissimilarity. The Bray-Curtis dissimilarity coefficient has been used by numerous benthic ecologists, either
directly, or in its standardized similarity form (Sanders, 1960; Dominanceaffinity), its presence-absence similarity form (Czekanowski, 1909, Sorenson, 1948).
66. A square root transformation for site classification was chosen to increase the importance of rarer species in the analysis without unduly reducing the importance of the dominant species. A square root transformation was also used in the species classification to reduce the effects of high values of individual species at certain sites.
67. Data used for species classification were standardized (species values at each site divided by sum of species values at all sites, i.e., proportions) after transformation because of the interest in similar patterns in the relative distribution of species. Without standardization the classification techniques would group species together based on overall abundanced (i.e., rare species together and abundant species together), which provides little ecological information. The data used for site classification were not standardized because the absolute differences in square root abundance values of species between different sites was considered an important criterion for site classification. Several other resemblance functions such as chord distance (Orloci, 1967), percentage similarity (Sanders, 1960), and the Canberra metric (Stephenson et al., 1972) are self-standardizing and were not used since absolute differences were considered to be important.
68. Both species-species and site-site resemblance matrices were clustered using a group-average sorting stretegy. This strategy is an agglomerative, polythetic, hierarchical clustering strategy in which sites or species are successively joined based on the smallest mean dissimilarity value between individual stations or species or groups of stations or groups of species already joined. This strategy was chosen because it is monotonic (no reversals), space conserving, and little prone to misclassification (Lance and Williams, 1967).
69. Classification is a popular method of analysis for multivariate data in many different scientific fields (Anderberg, 1973). Recent reviews by Jardine and Sibson (1971), Sneath and Sokal (1973), Anderberg (1973), Orloci (1975), and Clifford and Stephenson (1975) indicate there
is no general agreement on which is the best method for use with any particular set of data. The classification techniques used in this report have been used successfully by other benthic ecologists in recent years (Field and MacFarlane, 1968; Field, 1969, 1970; Day et al., 1971; Stephenson, 1972; Stephenson et al., 1975; Richardson, 1976; and others).
70. Community structure parameters used to characterize sites included numerical density, biomass, dominant species, and diversity. The five replicates from each site were combined to form a station. The values of numerical density and biomass were multiplied by two to convert those values to individuals $/ \mathrm{m}^{2}$ and ash-free dry weight $/ \mathrm{m}^{2}$ for each site.
71. Dominant species were determined by a ranking procedure (Fager, 1957) where the most abundant species at a station was given a value 10 , the next 9, and so on. The ranks were summed for each station considered and divided by the total number of stations summed. The resultant Biological Index (B.I.) included both frequency of occurrence and abundance in determining dominant species.
72. Diversity was calculated for each station from the Shannon and Weaver (1963) information function, the Brillouin (1962) information function, and Simpson's (1949) diversity function. H' is the ShannonWeaver diversity value,

$$
\begin{equation*}
H^{\prime}=\Sigma p_{i} \log _{x} p_{i} \tag{2}
\end{equation*}
$$

where $p_{i}$ is the proportion of individuals belonging to the ith species. Logs to the base $2, r$, and 10 were used. $H$ is the Brillouin diversity value,

$$
\begin{equation*}
H=\frac{1}{N} \log _{x} \frac{N!}{N_{1}!N_{2}!\cdots N_{s}!} \tag{3}
\end{equation*}
$$

where $N_{i}$ is the total number of individuals of the ith species and $N$ is the total number of individuals at the station. Logs to the base 2 , e, and 10 were used. $S D$ is the Simpson diversity value,

$$
\begin{equation*}
S D=1-\Sigma p_{1}^{2} \tag{4}
\end{equation*}
$$

where $p_{i}$ is the proportion of individuals belonging to the ith species. 73. Lloyd and Ghelardi (1964) have shown that diversity values are sensitive to two components, the number of species in a sample (species richness) and the distribution of individuals among species (evenness). Species richness (SR) was estimated by the Margalef (1958) function,

$$
\begin{equation*}
S R=\frac{(S-1)}{\ln (N)} \tag{5}
\end{equation*}
$$

where $S$ is the number of species at the station and $N$ is the total number of individuals at the station. Evenness was computed by two functions based on Pielou (1966). $\mathrm{J}^{\prime}$ is the evenness value,

$$
\begin{equation*}
J^{\prime}=\frac{H^{\prime}}{\log _{x} S} \tag{6}
\end{equation*}
$$

where H' is the Shannon-Weaver diversity value and $S$ is the number of species. As long as the $\log$ base is the same as that used to calculate the Shannon-Weaver diversity value, the value of the base does not change the $J$ value. $J$ is the evenness value.

$$
\begin{equation*}
J=\frac{H}{\log _{x} S} \tag{7}
\end{equation*}
$$

where $H$ is the Brillouin diversity value and $S$ is the number of species. 74. Diversity indices have recently been criticized because of their lack of biological meaning, sample size dependence, and questionable mathematical properties (Hurlbert, 1971; Goodman, 1975). It has been shown that by successively pooling replicate samples diversity values reach an asymptotic value that represents the actual diversity of the collection being sampled (Sanders, 1968; Boesch, 1971; Pielou, 1975).
75. Most of the criticism of diversity indices by biologists relates to the lack of biological process implicit in their calculation,
their relationships to ecological theory, and the use of cybernetic or thermodynamic analogies related to information-based diversity values. The relationship between diversity and ecological theory, especially diversity-stability concepts, has been criticized by Goodman (1975). It is probably true that high species diversity does not beget community stability (either persistence or constancy) but the relationships between environmental stability, time, productivity, etc., and diversity still need investigation. As suggested by Hurlbert (1971) and others, a species' importance to community structure may not be related to its abundance, biomass or productivity (see Paine, 1966; Dayton et al., 1974). It is not intended to imply cybernetic or thermodynamic overtones on deriving diversity values, but tather that diversity values be considered as attempts to represent the number of species and the distribution of individuals among species in a given area in a quantitative manner. Biological process is not a necessary attribute of diversity indices when used to quantify these relationships.

## Experimental Site $G$

76. The same methods of classification and community structure analysis that were used for baseline studies were applied to data collected from experimental site G. In addition several nonparametric tests were used to compare control stations and stations on which dredged material was disposed. These tests included the Kruskal-Wallis $H$ test (Tate and Clelland, 1957), and the Mann-Whitney $U$ test (Tate and Clelland, 1957) the Friedman two-way rank test (Hollander and Wolfe, 1973), and the Spearman rank correlation (Tate and Clelland, 1957).

## Megafauna

77. The same method of classification that was used for baseline studies were applied to the beam trawl data. Since beam trawl sample sizes (distance covered over the bottom by the beam trawl) were different, proportional values of species abundances at each station were used to calculate Bray-Curtis dissimilarity values between all possible pairs of samples. Proportional values of species abundances over all stations were used to determine species groups (same as macrofaunal baseline).

Prior to analysis, species abundance values were transformed ${ }^{[\log }{ }_{10}$ ( $x+1$ )] for both station and species classification. This transformation was used because of the patchy distribution of megafaunal species and the suspect quantitative sampling characteristics of the metered beam trawl.

## General

78. A total of 2190 samples were obtained from the MCR study site, including 73 metered beam trawls for megafauna, $16570.1-\mathrm{m}^{2}$ SmithMcIntyre grabs for macrofauna, 76 samples for meiofauna, five box cores for macrofauna, 369 samples for sediment, and 10 miscellaneous samples. This report includes the results of $13590.1-\mathrm{m}^{2}$ Smith-McIntyre grabs for macrofauna and 67 metered beam trawls for megafauna. Although meiofaunal results were included in the annual interum report, meiofaunal work was later excluded from the contract by mutual agreement between the authors and the Corps of Engineers. The results from the $0.1-\mathrm{m}^{2}$ box core samples are not included in this report because weather conditions and time limitations at sea prevented any systematic use of that sampling gear. The sediment samples were sent to the University of Washington. The results of the sediment investigations were reported to the Corps of Engineers by Sternberg et al. (1977).
79. A total of 339,753 individuals were sorted and identified from the $13590.1-\mathrm{m}^{2}$ Smith McIntyre grab samples for a mean of 250 individuals per sample. The 339,753 individuals were separated into 425 taxa, most of which were identified to the species level.
80. Three species lists are presented in Appendix CII. The species are arranged in phylogentic and alphabetic order in the first two lists and by species code in the third list. Megafaunal species found in the beam trawl samples are also included.
81. Appendix CIII includes the values of diversity, the number of species, individuals $/ \mathrm{m}^{2}$, and biomass values (grams ash-free dry weight $/ \mathrm{m}^{2}$ ) for each station. The contents of Appendix CIII is included under the appropriate sections in the results and in the discussion.
82. A total of 258,501 invertebrates were collected in the 67 metered beam trawl samples for a mean of 3858 individuals per sample. Of the 141 species identified from the beam trawl samples, only 49 had
the size range and behavior patterns to be adequately sampled and were included in the subsequent analysis.
83. The remainder of the results are divided into six sections. The first section presents the results of the pilot survey followed by the within station and between station variability, the areal baseline, the seasonal basclinc, and the study of experimental site $G$. A macrofauna station may be included in more than one section. The final section includes the results of the megafaunal survey.

## Pilot Survey

84. A total of 18,976 individuals were sorted from the forty-six $0.1-m^{2}$ Smith-McIntyre grab samples that comprised the pilot survey. The polychaetes, which accounted for 28.3 percent of the total number of individuals were not identified; therefore, no extensive analyses were performed on the pilot survey data. Two sampling grids were employed in the pilot survey.
85. The first grid samples, stations l-25 (Figure C4), were used to investigate patterns of distribution of assemblages in the MCR disposal site region. The density of macrofauna ranged from 310 to 18,170 individuals $/ \mathrm{m}^{2}$ 。 The densities increased from 310 to 1380 individuals $/ \mathrm{m}^{2}$ at the inshore sandy stations to 2090 to 4900 individuals $/ \mathrm{m}^{2}$ at the offshore stations that contained greater amounts of silt and clay. Stations 22 and 24 had the highest density of macrofauna, with 18,170 and 9280 individuals $/ \mathrm{m}^{2}$, respectively. Diastylopsis dawsoni, a cumacean, compriscd 84.8 percent of the total number of individuals at station 22 , accounting for the high densities at that station. Siliqua patula, the razor clam, was also abundant at station 22 , accounting for 10 percent of the individuals. Station 24 was dominated by the bivalve Axinopsida serricata (31 percent of the individuals) and polychaetes ( 50 percent of the individuals). The dominant taxa at the offshore stations ( $62-88 \mathrm{~m}$ ) were the bivalves Acila castrensis, Axinopsida serricata, and Nucula tenuis. The dominant taxa at the inshore stations (18-45 m) were the amphipods Echaustorius sencillus and Ampelisca macrocephala.
86. The second grid samples, stations 26-46 (Figure C5), were used to investigate the benthic assemglages found at disposal site $B$. The density of macrofauna ranged from 210 to 54,430 individuals $/ \mathrm{m}^{2}$. Nine stations $(27,28,29,31,33,34,37,38$, and 39 ) were dominated by the cumacean Diastylopsis dawsoni, which ranged from 510 to 52,400 individuals $/ \mathrm{m}^{2}$. The total density at those nine stations ranged from 1580 to 54,430 individuals/m ${ }^{2}$. Station 42 alse had a high density value (7,610 individuals/m²) and was domineted by polyonaetes $\{85.7$ peroent of individuals). The remaining lit stations had lower denctiy of macrofauna (range 210 to 2900 , mean 937 individual.s $/ \mathrm{m}^{2}$ ). The dominant species near disposal site $B$ included the cumacean Diastylopsis dawsoni, the gastropoda Olivella pycna, the bivalve Axinopsida serricata, the holothurian Paracaudina chilensis, and the gastropoda Olivella baetica.

## Within Station and Between Station Variability

87. Twenty replicate Smith-McIntyre grabs were obtained from one location ( $46^{\circ} 11.5^{\prime} \mathrm{N}, 124^{\circ} 06.5^{\prime} \mathrm{W}$ ) near experimental site G. The depth of water was 29 m and the substrate was a well-sorted sand with a median diameter (Md $\varnothing$ ) of $2.70 \phi$ and a standard deviation ( $\varnothing$ ) of $0.39 \varnothing$.
88. The dominant species were the polychaete Magelona sacculata, the amphipoda Eohaustorius sencillus, and the polychaete Spiophanes bombyx (Table C4). Except for the polychaetes Magelona sacculata and Thalenessa spinosa, all of the ten most dominant species exhibited a contagious distribution among the twenty samples.
89. The mean Bray-Curtis dissimilarity value between all possible pairs of samples was 0.49 (190 pairs). This high value indicated that single replicates were not a good estimate of the relative proportion of individuals of dominant species in this low density area (11-71 individuals per sample). The contagious distribution among samples of most dominant species contributes to the high dissimilarity values. If the 20 replicates are divided into 4 stations (5 replicates per station, taken in order), the mean Bray-Curtis dissimilarity value is reduced to
Table C4
Dominant species collected at replicate stations

${ }^{\cdot} \mathrm{S} \cdot \mathrm{N}$	$\varepsilon 0^{\circ} \mathrm{T}$	LO ${ }^{\circ}$ T	IT	$\mathrm{s} \cdot 8$	LI	$\varepsilon 9^{\circ} \mathrm{T}$	ธ¢
OT＊＞	Z $6^{\circ} \mathrm{T}$		LT	$\mathrm{s}^{\circ} \mathrm{Ot}$	Tz	SL＊${ }^{\text {L }}$	乙oE
T0 ${ }^{\circ} 0>$	$8 \chi^{\circ}$	T0 ${ }^{\circ} \mathrm{\varepsilon}$	øT	$\mathrm{s}^{\circ} \mathrm{St}$	โع	$L \varepsilon^{\bullet} \tau$	$L$
S0．0＞	$\angle \nabla^{\circ} \mathrm{L}$	$67^{\circ} \mathrm{T}$		S＊T	62	os ${ }^{\circ} \mathrm{Z}$	TLI
L0 ${ }^{\circ} 0$＞	$9 \%^{\circ} \mathrm{T}$	$50^{\circ}$ \％	$9 \tau$	s＊zz	St	LE＊${ }^{\circ}$	¢ても
T0．0＞	$\varepsilon \varepsilon \cdot \tau$	L6 ${ }^{\circ}$ T	LI	82	95	$88^{\circ} \mathrm{S}$	LヵT
T0＊${ }^{\circ}$＞	て¢• $\tau$	$\varepsilon 6^{\circ} \mathrm{T}$	8 L	82	95	ع9 ${ }^{\circ} 9$	Lع乙
T0．0＞	$62 \cdot 1$	¢ $8^{\circ}$ 乙	OZ	$\mathrm{s} \cdot 8 \mathrm{~s}$	LTT	OS＊8	DぁE
to ${ }^{\circ} \mathrm{O}>$	ع9＊${ }^{\text {T }}$	$8 \varepsilon^{\cdot} \mathrm{S}$	8 T	S． 99	$\varepsilon \varepsilon \tau$	SL•8	GST
$\cdot \mathrm{S} \cdot \mathrm{N}$	T0＊${ }^{\text {L }}$	OL｀T	OZ	$\angle 8$	®८T	$5 L \cdot 6$	6LZ
（ब）${ }^{6}$	${ }^{6}$ I	$\underline{x} / z^{s}$	$\overline{(0 Z) J}$	$\overline{z^{\mathrm{uI} / \mathrm{N}}}$	N	If	$\begin{aligned} & \text { әpon } \\ & \text { səṭจəds } \end{aligned}$

Species
Magelona sacculata
Eohaustorius sencillus
Spiophanes bombyx
Chaetozone setosa
Paraphoxus vigitegus
Amphipodia periercta－urtica
Amphipodia periercta－urtica
Nemertea sp．\＃7
Olivella baetica
Nephtys caecoides
Thalenessa spinosa

> uoṭsxədsṭp
> uoṭsxədsṭp fo xə
> Kouənbəxf $\left(Z{ }_{Z}^{w / N)} Z\right.$
0.25 (Figure C25). The mean dissimilarity value based on presence and absence data (Czekanowski dissimilarity) was 0.26 .
90. Previous studies (Richardson, 1976) have shown that a BrayCurtis dissimilarity value of 0.25 represents a high degree of similarity between stations; therefore five replicate samples per station was considered an adequate estimate of the number of individuals of dominant species per station for this area.
91. Within station variability was also examined for the 100 station areal baseline. Of the 100 stations, 69 had mean between replicate dissimilarity lower or the same as the 20 replicate series; 21 stations had mean between replicate dissimilarity of 0.50 to 0.60 ; and 10 stations had mean between replicate dissimilarity higher than 0.60 . Five replicates per station therefore appears to be adequate for most stations in the MCR study site region for classification of site groups.
92. The estimates of community structure values at this location were calculated from the summed species values of all replicates combined. Community structure parameters calculated from the twenty replicate samples, the four stations (five replicates), and all replicates combined are compared in Table C5.
93. The number of individuals $/ \mathrm{m}^{2}$ and biomass values are not sample-size dependent. The range of values of individuals $/ \mathrm{m}^{2}$ and biomass were considerable for the twenty replicate samples and were much reduced for the four stations. The number of species is sample-size dependent. A larger sample or more replicates will increase the number of species. Single replicates on the average captured only 30 percent of the total number of species collected in 20 replicates, and 5 replicates captured 67 percent of the total number of species. Neither single samples or stations (five replicates combined) are reliable estimates of the number of species at this location.
94. Diversity (H'), species richness (SR) and evenness (J') are also sample-size dependent. Diversity and species richness values increase with the number of individuals captured (more replicates) until the values approach the asymptotic values that represent the diversity



Figure C25. Dissimilarity Values Between Four Replicate Stations ( $46^{\circ} 11.5^{\prime} \mathrm{N}, 124^{\circ} 06.5^{\prime} \mathrm{W}$ )

## Table C5

Comparison of Values of Commity Structure Parameters for Replicates, Stations (Five Replicates Combined), and for all Replicates Combined ( $46^{\circ} 11.5^{\prime} \mathrm{N}, 124^{\circ} 06.5^{\prime} \mathrm{W}$ ).

Parameter*	Replicates		Replicates		20 Summed Replicates
	Mean	Range	Mean	Range	
\# Species	17.8	9-26	39.5	38-48	59.0
Individual/m ${ }^{2}$	462.0	110-710	462.0	366-520	462.0
H' (diversity)	3.51	2.37-4.12	4.17	4.13-4.32	4.38
SR (Species Richness)	4.40	2.67-5.91	7.08	6.07-8.45	8.49
J' (evenness)	0.86	0.69-0.97	0.79	0.77-0.88	0.74
Biomass/m ${ }^{2}$	1.69	0.17-6.28	1.69	1.40-1.93	1.69

* See text for definition of community structure parameters.
or species richness in a fully censused population. The mean diversity for stations was 95 percent of the diversity for twenty replicates combined while the mean diversity for individual replicates was 80 percent of the combined diversity. The range of diversity values calculated from stations was also much reduced when compared to the range of diversity calculated from replicates. Species richness values calculated from stations were 83 percent of the species richness value for all replicates combined, compared to 53 percent for the replicates. The evenness values decrease with the number of individuals captured (more replicates) until the asymptotic value of a fully censused population is reached. The mean evenness values for stations was 106 percent of the evenness value for all replicates combined while evenness values for the twenty replicate samples was 116 percent of the evenness value for all replicates combined. The range of evenness values was also greatly reduced for the four stations when compared to the twenty replicates.

95. The number of replicates necessary to estimate community structure parameters is dependent on the variability between replicates and the total number of individuals captured. In the areal baseline only 10 percent of the stations had much higher between replicate dissimilarity than the replicates chosen for the within station variability study and only 28 percent of the stations had lower total numbers of individuals captured. Therefore, five replicate samples per station are probably adequate to calculate community structure values for most of the stations in the areal baseline.

## Areal Baseline

96. The areal baseline consisted of 500 grabs obtained from 100 stations on cruises C7412B and C7501D. Twenty-four grab samples were excluded from the analyses because they were either collected poorly or were not sorted due to time constraints. The remaining 476 grab samples yielded 99,484 individuals that were identified to the lowest taxonomic level possible.
97. The numerically most abundant species collected from the areal baseline was the cumacean Diastylopsis dawsoni ( 20,441 individuals). Other numerically abundant species included the polychaetes Heteromastus filobranchus (5979 individuals), Lumbrineris luti (4825), Myriochele oculata (3367), Spiophanes berkeleyorum (2143), Maldane sarsi (2133), and Mediomastus californiensis (2070); the bivalves Axinopsida serricata $(15,993)$ and Acila castrensis (4292); and the gastropoda Olivella pycna (2667). Values of community structure parameters are found in Appendix CIII.

Assemblages and station groups
98. The 100 stations were clustered into five assemblages (Figure C26). The assemblages were defined as groups of stations that fused at between 0.51 and 0.60 Bray-Curtis dissimilarity units. The assemblages were divided into station groups that fused at between 0.36 and 0.49 Bray-Curtis dissimilarity units. The topographic distribution of the benthic assemblages and station groups are shown in Figures C27 and C28. The following paragraphs describe each assemblage and station group in terms of dominant species, community structure, and sediment characteristics. A more complete description of sediments found off the mouth of the Columbia was given by Sternberg et al. (1977).
99. Assemglage A. Assemblage A consisted of 24 stations located in deep water ( $60-97 \mathrm{~m}$ ) off the mouth of the Columbia River. Assemblage A was divided into four station groups. Station group $A_{1}$ was the deepest ( $75-97 \mathrm{~m}$ ) and was found along the entire western part of the study area; station group $A_{2}$ was at medium depth ( $60-68 \mathrm{~m}$ ) in the central and northern part of the study area; station group $A_{3}$ consisted of two stations (70 $m$ ) in the southern portion of the study area; and station group $A_{4}$ was the shallowest (47-51 m) group.
100. The sediment had greater than 10 percent silt and clay at all but 4 stations. The percentage of clay was greater than 5 percent at all but five of the stations. The percentage of clay and silt increased toward the northernmost stations.
101. The diversity ( $\mathrm{H}^{\prime}$ ) values ranged from 3.45 at station 150 to 5.24 at station 144, except for one lower value at station 53 (2.34).


Figure c26. Dendrogram of Dissimilarity Between Macrofaunal Stations-Areal Baseline


Figure C27. Location of Benthic Assemblages and Station Groups in Areal Baseline I


Figure C28. Location of Benthic Assemblages and Station Group in Areal Baseline II

The species richness (SR) values ranged from 8.11 at station 100 to 16.94 at station 149 (station $53=7.57$ ). The evenness ( $\mathrm{J}^{\prime}$ ) values ranged from 0.52 at station 150 to 0.78 at station 47 (station $53=0.40$ ). In general, the diversity, species richness, and evenness values increased with depth.
102. The density of macrofauna ranged from 2,034 individuals $/ \mathrm{m}^{2}$ at station 48 to 11,918 individuals $/ \mathrm{m}^{2}$ at station 147. The biomass values ranged from 5.15 g ash-free dry weight $/ \mathrm{m}^{2}$ at station 48 to 42.08 g ash-free dry weight $/ \mathrm{m}^{2}$ at station 99. Except for two southern stations, all biomass values were greater than 9.0 g ash-free dry weight $/ \mathrm{m}^{2}$.
103. The dominant species in assemblage A was the pelecypoda Axinopsida serricata, which occurred at all 24 stations with a mean density of 1626 individuals $/ \mathrm{m}^{2}$ (Table C ). Other dominant species included the polychaetes Lumbrineris luti and Myriochele oculata, and the pelecypoda Acila castrensis.
104. Station Group $A_{1}$. Station group $A_{1}$ consisted of 10 stations located in 75-97 m of water. These stations were the deepest stations sampled in this study. The 10 stations were joined at 0.36 Bray-Curtis units and joined station groups $A_{2}$ and $A_{3}$ at 0.53 Bray-Curtis units.
105. All sediment samples contained moderate amounts of silt and clay, ranging from 17.0 percent at station 47 to 39.1 percent at station 149. The silt increased northward from 9.0 percent at station 47 to 25.6 percent at station 149. All grab samples contained over 100 cc of wood chip material collected on the $1.00-\mathrm{mm}$ screen. The median phi-size ranged from $2.68 \varnothing$ at station 67 to $3.15 \varnothing$ at station 149 .
106. The diversity ( $H^{\prime}$ ) values ranged from 4.54 at station 54 to 5.24 at station 144. Species richness (SR) values ranged from 13.49 at station 97 to 16.94 at station 144. The evenness ( $J^{\prime}$ ) values ranged from 0.65 at station 54 to 0.78 at station 47 .
107. The density of macrofauna ranged from 3223 individuals $/ \mathrm{m}^{2}$ at station 47 to 7533 individuals $/ \mathrm{m}^{2}$ at station 148 with a slight increase northward. The biomass ranged from 5.78 g ash-free dry weight $/ \mathrm{m}^{2}$ at station 47 to 17.57 g ash-free dry weight $/ \mathrm{m}^{2}$ at station 54. Polychaetes and pelecypods accounted for most of the biomass.

Table 6

## Dominant Species in Assemblage A.*

Species Code	Species	BI	$\underline{\mathrm{f}} \mathbf{( 2 4 )}$	$\overline{\mathrm{N} / \mathrm{m}^{2}}$
24	Axinopsida serricata	9.16	24	1626
275	Lumbrineris luti	5.54	24	543
300	Myriochele oculata	5.00	24	392
19	Acila castrensis	3.83	23	440
282	Maldane sarsi	3.66	11	222
264	Heteromastus filobranchus	3.42	22	526
352	Spiochaetopterus costarum	3.04	21	154
294	Mediomastus californiensis	2.58	24	208
278	Magelona longicornis	2.50	20	116
345	Spiophanes berkeleyorum	2.42	24	258

* Includes the Biological Index (BI), frequency of occurrence [f(24)], and mean number of individuals $/ \mathrm{m}^{2}\left(\mathrm{~N} / \mathrm{m}^{2}\right)$ for the 10 most dominant species.

108. Dominant species were the polychaete Maldane sarsi and the pelecypoda Axinospida serricata. The polychaetes Lumbrineris luti, Spiochaetopterus costarum, Magelona longicornis, and Myriochele oculata also had biological index values greater than 5 (Table C7).
109. Station Group $A_{2}$. Station group $A_{2}$ consisted of eight stations located in $60-68 \mathrm{~m}$ of water off the mouth of the Columbia River. The eight stations were joined at 0.34 Bray-Curtis units.
110. All sediment samples contained moderate percentages of silt and clay. The silt and clay increased northward from 7.14 percent at station 56 to 33.34 percent at station 147. No sediment sample was analyzed from station 150. All grab samples contained over 100 cc of wood chip material collected on the 1.00 mm screen. The median phi-size increased northward from $2.64 \phi$ at station 56 to $3.27 \phi$ at station 147 .
lll. The diversity (H') values ranged from 3.45 at station 150 to 3.92 at station 99. The species richness (SR) values ranged from 9.17 at station 96 to 12.39 at station 150 with a tendency to increase northward. The evenness (J') values ranged from 0.52 to 0.61 .
111. The density of macrofauna increased northward from 5004 individuals $/ \mathrm{m}^{2}$ at station 56 to 11,918 individuals $/ \mathrm{m}^{2}$ at station 147 and 11,067 individuals $/ \mathrm{m}^{2}$ at station 150. The biomass ranged from 10.56 g ash-free dry weight $/ \mathrm{m}^{2}$ at station 150 to 42.08 g ash-free dry weight $/ \mathrm{m}^{2}$ at station 99. Pelecypods, especially Acila castrensis, accounted for the high biomass at southern stations.
112. Dominant species included the pelecypod Axinopsida serricata and the polychaetes Lumbrineris luti and Myriochele oculata. Also dominant were the pelecypoda Acila castrensis and the polychaetes Spiophanes berkeleyorum and Heteromastus filobranchus (Table C8).
113. Station Group $A_{3}$. Station group $A_{3}$ consisted of two stations ( 70 m ) in the southern part of the study area. The two stations joined at 0.37 Bray-Curtis units.
114. The sediment at station 48 was 5.0 percent silt and clay, and the sediment at station 53 was 3.1 percent. The median phi-size was $2.93 \phi$ at station 48 and $2.75 \phi$ at station 53.

Dominant Species at Station Group $\mathrm{A}_{1}$.*

Species code	Species	BI	$\mathrm{f}(10)$	$\overline{\mathrm{N}} / \mathrm{m}^{2}$
282	Maldane sarsi	9.0	10	533
24	Axinopsida serricata	9.0	10	692
275	Lumbrineris luti	6.5	10	398
352	Spiochaetopterus costarum	6.4	10	284
278	Magelona longicornis	6.0	10	271
300	Myriochele oculata	4.3	10	234
19	Acila castrensis	1.9	10	243
261	Haploscoloplos elongatus	1.7	8	100
242	Decamastus gracilis	1.6	10	124
97	Diastylopsis dawsoni	1.5	10	91
33	Macoma elimata	1.4	10	137
294	Mediomastus californiensis	1.4	10	139
312	Notomastus hemipodus	1.0	10	63

* Includes the Biological Index (BI), frequency of occurrence [f(10)], and mean number of individuals $/ \mathrm{m}^{2}\left(\mathrm{~N} / \mathrm{m}^{2}\right)$ for the 13 most dominant species.


## Dominant Species at Station Group $A_{2}$.*



* Includes the Biological Index (BI), frequency of occurrence [f(8)], and mean number of individuals $/ \mathrm{m}^{2}\left(\mathrm{~N} / \mathrm{m}^{2}\right)$ for the 10 most dominant species.

116. The diversity ( $H^{\prime}$ ) value at station 48 was 4.73 ; the species richness (SR) value was 12.00; and the evenness (J') value was 0.74 . Statoon 53 had lower diversity ( $H^{\prime}=2.34$ ), species richness ( $\mathrm{SR}=7.57$ ) and evenness ( $J^{\prime}=0.40$ ) values.
117. The density of macrofauna was 2034 individuals $/ \mathrm{m}^{2}$ at station 48 and 2912 individuals $/ \mathrm{m}^{2}$ at station 53. The biomass value was higher at station $53\left(23.41 \mathrm{~g}\right.$ ash-free dry weight $/ \mathrm{m}^{2}$ ) than at station 48 ( 5.15 g ash-free dry weight $/ \mathrm{m}^{2}$ ).
118. The higher biomass value at station 53 is due to the higher density of the pelecypoda, Acila castrensis (1926 individuals $/ \mathrm{m}^{2}$ at station $53 ; 426$ individuals $/ \mathrm{m}^{2}$ at station 47). The high density of Acila castrensis at station 53 also decreased the evenness component of diversity, thus reducing the diversity at that station.
119. The dominant species were the pelecypods Acila castrensis and Nucula tenuis and the polychaete Myriochele oculata. The polychaetes Haploscoloplos elongatus and Spiochaetopterus costarum, the ophiuroid Amphiodia periercta-urtica, and the pelecypoda Axinospida serricata also had BI values greater than 5 (Table C9).
120. Station Group $A_{4}$. Staton group $A_{4}$ consisted of 4 stations located in 47 to 51 m of water directly off the mouth of the Columbia River. The four stations were joined at 0.36 Bray-Curtis units and joined with station group $A_{I}$ at 0.47 Bray-Curtis units.
121. The three northern stations contained moderate amounts of silt and clay ranging from 13.2 percent at station 65 to 42.8 percent at station 95. Station 70 , the southernmost station, contained only 2.5 percent silt and clay. All grab samples contained over 100 cc of wood chip material collected on the 1.00 mm screen. The median phi-size increased northward from $2.64 \varnothing$ at station 70 to $3.30 \phi$ at station 100 .
122. The diversity (H') values ranged from 3.33 at station 65 to 3.70 at station 95. Species richness (SR) values ranged from 8.11 at station 100 to 8.72 at station 70. The evenness (J') values ranged from 0.53 at station 65 to 0.61 at stations 95 and 100 .
123. The density of macrofauna ranged from 4730 at station 100 to 13,523 individuals $/ \mathrm{m}^{2}$ at station 65. The density values at the two

## Dominant Species at Station Group $A_{3}{ }^{*}$

Species Code	Species	BI	$\underline{\mathrm{I}} \mathrm{P}$ )	$\overline{\mathrm{N} / \mathrm{m}^{2}}$
19	Acila castrensis	10.0	2	1176
300	Myriochele oculata	8.0	2	133
20	Nucula tenuis	8.0	2	129
261	Haploscoloplos elongatus	5.5	2	103
425	Amphiodia periercta-urtica	5.5	2	72
24	Axinopsida serricata	5.5	2	62
352	Spiochaetopterus costarum	4.0	2	73
193	Euphilomedes Carcharodonta	2.0	2	38
67	Dentallidae spp.	2.0	2	44
6	Odostomia sp. \#1	1.5	2	35
275	Lumbrineris luti	1.5	2	41
331	Polycirrus spp.	1.0	2	34

* Includes the Biological Index (BI), frequency of occurrence $[f(2)]$ and mean number of individuals $/ \mathrm{m}^{2}\left(\mathrm{~N} / \mathrm{m}^{2}\right)$ of the 12 most dominant species.
southern stations were higher than at the two northern stations. Biomass values were also higher at the two southern stations (37.88-49.72 g ashfree dry weight $/ \mathrm{m}^{2}$ ) and than at the two northern stations (19.21-19.64 g ash-free dry weight $/ \mathrm{m}^{2}$ ). Polychaetes, pelecypods, and holothuroids were primarily responsible for the very high biomass values.

124. Dominant species at station group $A_{4}$ included the pelecypod Axinopsida serricata and the polychaete Heteromastus filobranchus. The polychaetes Mediomastus californiensis, Pholoe minuta, and Spiophanes berkeleyorum; the cumacean Diastylopsis dawsoni; and the ophiuroid Amphiodia periercta-urtica were also dominant (Table ClO).
125. Assemblage B. Assemblage B consisted of 17 stations located in the northcentral part of the study area in moderate depths (29-44 m). Assemblage $B$ was divided into two station groups: station group $B_{1}$ in shallower water $(29-33 \mathrm{~m})$ and station group $B_{2}$ in deeper water ( $37-44 \mathrm{~m}$ ).
126. The sediment at all but three of the stations contained greater than 10 percent silt with a general increase in percentage silt northward (range 0.6-58.4 percent). The percentage of clay ranged from 1.0 to 5.0 percent. The median phi-size ranged from $2.15 \phi$ at station 76 to $4.23 \varnothing$ at station 146 with an increase in median phi-size northward.
127. Diversity (H') values ranged from 0.59 at station 103 to 4.34 at station 146. Species richness (SR) values ranged from 3.59 at station 103 to 7.42 at station 146. Evenness ( $\mathrm{J}^{\prime}$ ) values ranged from 0.12 at station 103 to 0.79 at station 151 .
128. The density of macrofauna ranged from 944 individuals $/ \mathrm{m}^{2}$ at station 152 to 6962 individuals $/ \mathrm{m}^{2}$ at station 137. The biomass ranged from 1.21 to 6.27 g ash-free dry weight $/ \mathrm{m}^{2}$ except for the high values at stations 90 ( 10.9 g ash-free dry weight $/ \mathrm{m}^{2}$ ), and 89 ( 36.0 g ash-free dry weight/m ${ }^{2}$ ).
129. The diversity (H'), species richness (SR), and evenness (J') values increased offshore and northward. Biomass values and individuals/ $m^{2}$ were highest in the northwestern part of disposal site $B$ at stations 88, 89, 90, 101, 103, 126, 136, and 137.

## Dominant Species at Station Group $A_{4}$ **

Species Code	Species	BI	$\underline{f(4)}$	$\overline{\mathrm{N} / \mathrm{m}^{2}}$
24	Axinopsida serricata	9.75	4	2416
264	Heteromastus filobranchus	9.25	4	2317
294	Mediomastus californiensis	5.50	4	375
322	Pholoe minuta	4.75	4	243
345	Spiophanes berkeleyorum	4.50	4	433
97	Diastylopsis dawsoni	4.25	4	236
425	Amphiodia periercta-urtica	4.00	4	170
243	Trochochaeta Eranciscanum	2.00	3	222
31	Macoma nasuta	2.00	4	124
456	Nemertea sp. \#4	1.75	4	112
320	Pectinaria californiensis	1.75	4	223
78	Paracaudina chilensis	1.75	4	64
19	Acila castrensis	1.25	4	90

* Includes Biological Index (BI), frequency of occurrence [f(4)], and mean number of individuals $/ \mathrm{m}^{2}\left(\mathrm{~N} / \mathrm{m}^{2}\right)$ of the 13 most dominant species.

130. The dominant species in Assemblage B was the cumacean Diastylopsis dawsoni. Other dominant species included the holothuroid Paracaudina chilensis, the polychaete Haploscoloplos elongatus, and the pelecypoda Tellina modesta (Table Cll).
131. Station Group $B_{1}$. Station group $B_{1}$ consisted of seven stations located in 29-30 m of water. The southernmost station (127) was located in the northern part of disposal site $B$, and the remaining six stations were located north of station 127 along the $30-\mathrm{m}$ depth contour. The seven stations were joined at 0.48 Bray-Curtis units.
132. The percentage silt ranged from 9.4 percent at station 103 to 27.5 percent at station 145 . The percentage clay ranged from 1.2 percent to 1.7 percent. The median phi-size ranged from $3.16 \varnothing$ at station 127 to $3.66 \varnothing$ at station 145.
133. The diversity ( $H^{\prime}$ ) values ranged from 0.59 at station 103 to 4.10 at station 145. Species richness (SR) values ranged from 3.59 at station 103 to 7.11 at station 145. Evenness (J') values ranged from 0.12 at station 103 to 0.74 at station 145 .
134. The density of macrofauna ranged from 944 individuals $/ \mathrm{m}^{2}$ at station 152 to 4862 individuals $/ \mathrm{m}^{2}$ at station 103. The biomass values ranged from 1.21 g ash-free dry weight $/ \mathrm{m}^{2}$ at station 152 to 3.41 g ashfree dry weight $/ \mathrm{m}^{2}$ at station 101.
135. Station group $B_{1}$ can be divided into two subgroups based on the abundance of the cumacean Diastylopsis dawsoni. Stations 101, 103, 104, and 136 had high density values of Diastylopsis dawsoni (2140-4534 individuals $/ \mathrm{m}^{2}$ ). The diversity (H') values were low (0.59-1.89); the evenness (J') values were low (0.12-0.36); and the density (2944-4862 individuals $/ \mathrm{m}^{2}$ ) and biomass values ( $2.51-3.41 \mathrm{~g}$ ash-free dry weight $/ \mathrm{m}^{2}$ ) were high. At stations 127, 145, and 152 the abundance of Diastylopsis dawsoni was lower (330-518 individuals $/ \mathrm{m}^{2}$ ); the diversity (H') values were higher (2.75-4.10); the evenness (J') values were higher (0.56$0.74)$; the density values were lower (944-1122 individuals $/ \mathrm{m}^{2}$ ); and the biomass values were lower ( $1.21-1.68 \mathrm{~g}$ ash-free dry weight $/ \mathrm{m}^{2}$ ).
136. The cumacean Diastylopsis dawsoni was the dominant species accounting for 79 percent of all the individuals found at station group

## Table Cll

Dominant Species in Assemblage $B^{*}$

Species				
Code	Species	BI	f(17)	$\overline{\mathrm{N}} / \mathrm{m}^{2}$
97	Diastylopsis dawsoni	7.26	17	1278
78	Paracaudina chilensis	4.74	16	92
261	Haploscoloplos elongatus	4.44	17	69
36	Tellina modesta	4.00	17	53
425	Amphiodia periercta-urtica	3.44	17	56
316	Owenia collaris	3.41	15	72
24	Axinopsida serricata	3.02	17	52
264	Heteromastus filobranchus	2.76	8	146
237	Chaetozone setosa	2.58	16	60
9	Olivella pycna	2.12	17	25
143	Paraphoxus fatigans	1.94	10	40
322	Pholoe minuta	1.62	16	36

* Includes Biological Index (BI), frequency of occurrence [f(17)], and mean number of individuals $/ \mathrm{m}^{2}\left(\mathrm{~N} / \mathrm{m}^{2}\right)$ of the 12 most dominant species.
$B_{1}$ (Table Cl2). Other dominant species included the pelecypoda Tellina modesta, the polychaetes Owenia collaris and Haploscoloplos elongatus, the gastropoda Olivella pycna, and the ophiuroid Amphiodia perierctaurtica.

137. Station Group $\mathrm{B}_{2}$. Station group $\mathrm{B}_{2}$ consisted of 10 stations located in $37-44 \mathrm{~m}$ of water along the seaward edge of disposal site $B$ and north of disposal site $B$ along the $40-m$ contour. The 10 stations were joined at 0.48 Bray-Curtis units and joined station group $B_{1}$ at 0.57 Bray-Curtis units.
138. The percentage silt in sediments increased northward from less than 1 percent at station 75 to 58 percent at station 146 . Samples from stations $88,89,90$ and 137 contained over 100 cc of wood chip material retained on the 1.00 mm screen. The median phi-size increased northward from $2.15 \varnothing$ at station 76 to $4.23 \varnothing$ at station 146.
139. Diastylopsis dawsoni accounted for 75 percent of the individuals at station 137, which lowered the diversity ( $\mathrm{H}^{\prime}$ ) value (1.77) and evenness (J') value (0.32). If station 137 were excluded, diversity ( $H^{\prime}$ ) values ranged from 2.89 at station 88 to 4.37 at station 151 . Species richness (SR) values ranged from 5.60 to 8.35. Evenness ( $J^{\prime}$ ) values ranged from 0.53 at station 89 to 0.79 at station 151 .
140. The density values ranged from 734 individuals $/ \mathrm{m}^{2}$ at station 76 to 2,618 individuals $/ \mathrm{m}^{2}$ at station 90 . Biomass values ranged from 1.66 g ash-free dry weight $/ \mathrm{m}^{2}$ at station 151 to 36.03 g ash-free dry weight $/ \mathrm{m}^{2}$ at station 89. The major contributor to the high biomass value at station 89 was the holothuroid Paracaudina chilensis.
141. The stations located in central part of station group $B_{2}(88$, 89, and 90) had the lowest diversity and evenness values and highest density and biomass values.
142. The dominant species at station group $B_{2}$ were the holothuroid Paracaudina chilensis, the cumacean Diastylopsis dawsoni, the polychaetes Haploscoloplos elongatus and Heteromastus filobranchus, and the pelecypoda Axinopsida serricata (Table Cl3).

## Table Cl2

## Dominant Species at Station Group $\mathrm{B}_{1}$.*

Species Code	Species	BI	$\underline{\mathrm{f}} \mathrm{7}$ )	$\overline{\mathrm{N}} / \mathrm{m}^{2}$
97	Diastylopsis dawsoni	10.00	7	2088
36	Tellina modesta	6.64	7	48
316	Owenia collaris	5.29	6	88
9	Olivella pyona	4.29	7	37
425	Amphiodia periercta-urtica	3.21	7	25
261	Haploscoloplos elongatus	3.21	7	27
343	Spio filicornis	2.36	4	15
78	Paracaudina chilensis	2.36	5	21
141	Paraphoxus vigitengus	2.14	4	22
137	Paraphoxus epistomus	2.14	5	22
127	Monoculodes spinipes	2.00	6	14
344	Spiophanes bombyx	1.93	2	19

* Includes Biological Index (BI), frequency of occurrence [f(7)], and mean number of individuals $/ \mathrm{m}^{2}\left(\mathrm{~N} / \mathrm{m}^{2}\right)$ of the 12 most dominant species.


## Table C13

Dominant Species at Station Group $\mathrm{B}_{2} . *$

Species Code	Species	BI	$\underline{\mathrm{f}}$ (10)	$\overline{\mathrm{N}} / \mathrm{m}^{2}$
78	Paracaudinia chilensis	6.40	10	142
97	Diastylopsis dawsoni	5.35	10	712
261	Haploscoloplos elongatus	5.30	10	96
24	Axinopsida serricata	4.85	10	85
264	Heteromastus filobranchus	4.70	7	248
237	Chaetozone setosa	4.40	10	100
425	Amphiodia periercta-urtica	3.60	10	77
143	Paraphoxus fatigans	2.90	6	61
322	Pholoe minuta	2.35	10	56
36	Tellina modesta	2.15	10	57
316	Owenia collaris	2.10	8	61
198	Tecticeps convexus	1.45	10	36

* Includes Biological Index (BI), frequency of occurrence [f(10)], and mean number of individuals $/ \mathrm{m}^{2}\left(\mathrm{~N} / \mathrm{m}^{2}\right)$ of the 12 most dominant species.

143. Assemblage C. Assemblage C consisted of 15 stations located in shallow water ( $18-47 \mathrm{~m}$ ) in the southern part of the study area. The 15 stations were joined at 0.51 Bray-Curtis units. Two subgroups, the offshore stations ( $49,52,57$, and 120 ) ( $40-47 \mathrm{~m}$ ) and the inshore stations ( $18-29 \mathrm{~m}$ ), joined at 0.36 and 0.35 Bray-Curtis units, respectively.
144. The percentage silt and clay was less than 2.5 percent at all stations. The median phi-size ranged from 2.65 to $3.14 \phi$ with a slight decrease offshore.
145. The diversity values ( $\mathrm{H}^{\prime}$ ) ranged from 3.33 station 123 to 4.51 at station 120 with a slight increase in diversity offshore. The species richness (SR) values ranged from 4.55 at station 61 to 8.56 at station 49 also with a slight increase offshore. Evenness (J') values ranged from 0.69 to 0.82 .
146. The density of macrofauna was low at all stations and ranged from 334 individuals $/ \mathrm{m}^{2}$ at station 123 to 888 individuals $/ \mathrm{m}^{2}$ at station 49. Biomass values were also low and ranged from 0.67 g ash-free dry weight $/ \mathrm{m}^{2}$ at station 50 to 2.11 g ash-free dry weight $/ \mathrm{m}^{2}$ at station 51 .
147. Dominant species were the polychaete Spiophanes bombyx and the amphipoda Eohaustorius sencillus. Also dominant were the polychaetes Magelona sacculata and Chaetozone setosa along with the ophiuroid Amphiodia periercta-urtica (Table Cl4).
148. Assemblage D. Assemblage D consisted of 38 stations located in shallow water ( $13-40 \mathrm{~m}$ ) off the mouth of the Columbia River. Assemblage D was divided into 3 station groups: station group $D_{1}$ was located in the southern portion of assemblage $D$; station group $D_{2}$ was located directly off the mouth of the Columbia River in shallow water ( $13-27 \mathrm{~m}$ ); and station group $D_{3}$ was located in deeper water ( $26-40 \mathrm{~m}$ ) near disposal site $B$. Station 78 was not placed in a station group but was included in assemblage D.
149. The sediment at all stations was sandy (>94 percent sand) with a maximum of 5.7 percent silt and clay at station 92 . The sediment at most stations was greater than 98 percent sand. Median phi-size ranged from $1.96 \varnothing$ to $3.09 \varnothing$.

## Table Cl4

Dominant Species in Assemblage $C_{1} . *$

Species code	Species	BI	$\underline{f(15)}$	$\overline{\mathrm{N}} / \mathrm{m}^{2}$
344	Spiophanes bombyx	8.57	15	75
155	Eohaustorius sencillus	8.43	15	74
279	Magelona sacculata	6.96	15	61
237	Chaetozone setosa	5.80	15	34
425	Amphiodia periercta-urtica	4.16	15	24
141	Paraphoxus vigitegus	2.66	11	14
7	Olivella baetica	2.03	13	22
24	Axinopsida serricata	1.50	7	14
137	Paraphoxus epistomus	1.53	13	13
354	Thalenessa spinosa	1.30	13	7
345	Spiophanes berkeleyorum	1.23	9	10
127	Monoculodes spinipes	1.17	14	10
193	Euphilomedes carcharedonta	1.13	8	11
302	Nephtys caecoides	0.93	15	12
29	Macoma moesta alaskana	0.93	14	7

* Includes Biological Index (BI), frequency of occurrence [f(15)], and mean number of individuals $/ \mathrm{m}^{2}\left(\mathrm{~N} / \mathrm{m}^{2}\right)$ of the 15 most dominant species.

150. The diversity ( $H^{\prime}$ ) values ranged from 1.79 to 4.20. The highest values of diversity were found in the southwest and northern portions of assemblage D. The species richness (SR) values ranged from 2.12 to 6.88 and the evenness ( $J^{\prime}$ ) values ranged from 0.40 to 0.81 . The highest species richness and evenness values were generally associated with the high diversity values in the southwest and northern portions of assemblage D.
151. The density of macrofauna was low at all stations ranging from 196 individuals $/ \mathrm{m}^{2}$ to 780 individuals $/ \mathrm{m}^{2}$ with the highest values at the deeper stations. The biomass values ranged from 1.25 g to 5.84 g ash-free dry weight $/ \mathrm{m}^{2}$.
152. The dominant species of assemblage $D$ was the gastropoda Olivella pycna (Table C15). Olivella pycna occurred at all 38 stations and had a mean of 128 individuals $/ \mathrm{m}^{2}$. Magelona sacculata, a polychaete, was also dominant, occurring at all 38 stations with a mean of 49 individuals $/ \mathrm{m}^{2}$. Other dominant species included the cumacean Diastylopsis dawsoni, the amphipoda Monoculodes spinipes, and the gastropoda olivella biplicata.
153. Station Group $D_{1}$. Station group $D_{1}$ consisted of four stations located in $16-26 \mathrm{~m}$ of water south of the mouth of the Columbia River. The four stations joined station groups $D_{2}$ and $D_{3}$ at 0.56 Bray-Curtis units.
154. The sediment at all stations inlcuded less than 1.5 percent silt and clay. The median phi-size ranged from $1.96 \phi$ at station 125 to $2.59 \phi$ at station 59.
155. Diversity ( $H^{\prime}$ ) values ranged from 2.70 to 3.36 , species richness (SR) from 2.77 to 3.89 , and evenness (J') ranged from 0.61 to 0.81.
156. The density of macrofauna was low ranging from 196 individuals $/ \mathrm{m}^{2}$ at station 121 to 340 individuals $/ \mathrm{m}^{2}$ at station 124 . The biomass values ranged from 1.25 to 2.00 g ash-free dry weight $/ \mathrm{m}^{2}$.
157. Dominant species were the polychaete Magelona sacculata and the gastropoda Olivella pycna. Also dominant were the mysid Archeomysis grebnitzkii and the amphipods Hippomedon denticulatus and Monoculodes spinipes (Table Cl6).

## Table Cl5

Dominant Species in Assemblage D.*

Species Code	Species	BI	$\underline{\mathrm{f}} \mathbf{}$ (38)	$\stackrel{\rightharpoonup}{\mathrm{N}} / \mathrm{m}^{2}$
9	Olivella pycna	9.71	38	128
279	Magelona sacculata	7.36	38	49
97	Diastylopsis dawsoni	4.26	29	36
127	Monoculodes spinipes	4.21	38	11
8	Olivella biplicata	3.91	37	16
237	Chaetozone setosa	2.47	30	9
110	Archeomysis grebnitzkii	2.25	28	8
261	Haploscoloplos elongatus	2.23	28	13
169	Hippomedon denticulatus	1.78	20	6
153	Mandibulophoxus unirostratus	1.71	24	7
7	Olivella baetica	1.32	21	4

* Includes Biological Index (BI), frequency of occurrence [f(38)], and mean number of individuals $/ \mathrm{m}^{2}\left(\mathrm{~N} / \mathrm{m}^{2}\right)$ of the 11 most dominant species.


## Table Cl6

## Dominant Species at Station Group $\mathrm{D}_{1} . *$

Species Code	Species	BI	$\underline{\mathrm{f}}$ (4)	$\overline{\mathrm{N} / \mathrm{m}^{2}}$
279	Magelona sacculata	9.50	4	66
9	Olivella pycna	9.00	4	56
110	Archeomysis grebnitzkii	6.75	4	25
169	Hippomedon denticulatus	6.25	4	13
127	Monoculodes spinipes	5.00	4	9
8	Olivella biplicata	3.00	4	5
344	Spiophanes bombyx	2.50	3	8
7	Olivella baetica	2.12	3	4

* Includes Biological Index (BI), frequency of occurrence [f(4)], and mean number of individuals $/ \mathrm{m}^{2}\left(\mathrm{~N} / \mathrm{m}^{2}\right)$ of the 8 most dominant species.

158. Station Group $D_{2}$. Station group $D_{2}$ consisted of 25 stations (13-27 m) which were located directly off the mouth of the Columbia River. The 25 stations were joined at 0.48 Bray-Curtis units and joined station group $D_{3}$ at 0.53 Bray-Curtis units.
159. The percentage of silt and clay ranged from 1 to 5 percent. The median phi ranged from $2.07 \varnothing$ to $3.09 \varnothing$.
160. The diversity ( $\mathrm{H}^{\prime}$ ) values ranged from 1.79 at station 79 to 4.20 at station 135. Species richness (SR) values ranged from 2.12 at station 79 to 6.68 at station 135 . Evenness ( $J^{\prime}$ ) values ranged from 0.40 to 0.81 .
161. The density of macrofauna was low with a range of 244 individuals $/ \mathrm{m}^{2}$ at station 86 and 77 to 780 individuals $/ \mathrm{m}^{2}$ at station 92 . Biomass values ranged from 1.60 g ash-free dry weight $/ \mathrm{m}^{2}$ at station 119 to 5.84 g ash-free dry weight at station 85. Diversity ( $\mathrm{H}^{\prime}$ ) and species richness (SR) values tended to be highest in the northwestern portion of station group $\mathrm{D}_{2}$.
162. The dominant species were the gastropoda Olivella pycna and the polychaete Magelona sacculata. Other dominant species included the cumacean Diastylopsis dawsoni, the amphipoda Monoculodes spinipes, and the gastropoda Olivella biplicata (Table Cl7).
163. Station Group $\mathrm{D}_{3}$. Station group $\mathrm{D}_{3}$ consisted of eight stations (26-40 m) located along the southwest portion of disposal site $B$. The eight stations were joined at 0.49 Bray-Curtis units and joined station group $\mathrm{D}_{2}$ at 0.53 Bray-Curtis units.
164. The sediment samples all contained less than 2 percent silt and clay. The median phi-size ranged from $2.01 \phi$ to $2.43 \phi$.
165. The diversity ( $H^{\prime}$ ) values ranged from 3.27 at station 71 to 4.11 at station 73. Species richness (SR) values from 5.25 to 6.47 and evenness ( $J^{\prime}$ ) values ranged from 0.70 to 0.80 .
166. The density of macrofauna ranged from 198 individuals $/ \mathrm{m}^{2}$ at station 71 to 606 individuals $/ \mathrm{m}^{2}$ at station 87 . The biomass values ranged from 1.33 g ash-free dry weight $/ \mathrm{m}^{2}$ at station 71 to 5.65 g ashfree dry weight/ $/ \mathrm{m}^{2}$ at station 87.

## Dominant Species at Station Group $\mathrm{D}_{2}$ *

Species Code	Species	BI	$\underline{\mathrm{f}} \mathbf{( 2 5 )}$	$\overline{\mathrm{N}} / \mathrm{m}^{2}$
9	Olivella pyona	9.80	25	139
279	Magelona sacculata	7.62	25	49
97	Diastylopsis dawsoni	5.78	24	51
127	Monoculodes spinipes	5.16	25	13
8	Olivella biplicata	4.54	24	18
153	Mandibulophoxus uncirostratus	2.40	20	9
237	Chaetozone setosa	2.38	20	7
169	Hippomedon denticulatus	1.78	15	6
110	Archeomysis grebnitzkii	1.66	17	4
261	Haploscoloplos elongatus	1.28	18	5
197	Bathycopea daltonae	1.18	19	4
460	Nemertea sp. \#4	1.06	17	9

* Included Biological Index (BI), frequency of occurrence [f(25)] and mean number of individuals $/ \mathrm{m}^{2}\left(\mathrm{~N} / \mathrm{m}^{2}\right)$ of the 12 most dominant species.

167. The dominant species were the gastropoda Olivella pycna and the polychaete Haploscoloplos elongatus. Other dominant species included the polychaetes Chaetozone setosa and Magelona sacculata, the gastropoda olivella baetica, and the cumacean Colurostylis occidentalis (Table Cl8).
168. Assemblage E. Assemblage E consisted of five stations located in $13-20 \mathrm{~m}$ of water on the north side of the main channel of the Columbia River, from inside the north jetty to 3.5 km offshore. The five stations were joined at 0.59 Bray-Curtis units and did not join the other inshore station groups until 0.76 Bray-Curtis units.
169. The sediment at stations 112,113 , and 114 had less than 2 percent silt and clay size particles while station 115 had 3.7 percent and station 111 had 16.4 percent.
170. Diversity ( $\mathrm{H}^{\prime}$ ) values ranged from 1.86 at station 112 to 3.60 at station 114. Species richness (SR) values ranged from 2.86 at station 113 to 4.65 at station 1ll. Evenness (J') values ranged from 0.42 at station 112 to 0.83 at station 115.
171. The density of macrofauna ranged from 94 individuals $/ \mathrm{m}^{2}$ at station 113 to 866 individuals $/ \mathrm{m}^{2}$ at station 111 . The biomass values were very low with a range of 0.28 g ash-free dry weight $/ \mathrm{m}^{2}$ at station 113 to 0.81 g ash-free dry weight $/ \mathrm{m}^{2}$ at station 115.
172. The two stations located in the mouth of the Columbia River (111 and 112) had lower diversity ( $\mathrm{H}^{\prime}$ ) and evenness (J') values and higher density values when compared to the two most offshore stations (114 and 115) in Assemblage E. Station 113 had intermediate in diversity values with lower species richness, density, and biomass values compared to the other four stations.
173. The dominant species at stations 111 and 112 was the polychaete Spio filicornis ( 449 individuals $/ \mathrm{m}^{2}$ ) that accounted for over 60 percent of the individuals at those stations (Table C19). The dominance of Spio filicornis resulted in lower evenness ( $J^{\prime}$ ) values and thus lower diversity at these stations. The amphipods Hippomedon denticulatus, Mandibulophoxus uncirostratus, and Monoculodes spinipes and the cumacean Diastylopsis

## Dominant Species at Station Group $\mathrm{D}_{3}$. *

Species Code	Species	BI	$\underline{\mathrm{f}} \mathrm{8}$ )	$\overline{\mathrm{N}} / \mathrm{m}^{2}$
9	Olivella pycna	9.87	8	117
261	Haploscoloplos elongatus	6.50	8	45
237	Chaetozone setosa	3.68	8	21
279	Magelona sacculata	3.56	8	12
7	Olivella baetica	3.06	8	11
104	Colurostylis occidentalis	3.06	8	11
8	Olivella biplicata	2.81	8	17
316	Owenia collaris	2.25	5	11
425	Amphipodia periercta-urtica	2.18	7	9
110	Archeomysis grebnitzkii	2.12	7	12

* Includes Biological Index (BI), frequency of occurrence [f(8)], and mean number of individuals $/ \mathrm{m}^{2}\left(\mathrm{~N} / \mathrm{m}^{2}\right)$ of the 10 most dominant species.


## Table C19

## Dominant Species in Assemblage E.*

Species Code	Species	BI	$\underline{\mathrm{f}} \mathrm{S}$ )	$\overline{\mathrm{N} / \mathrm{m}^{2}}$
343	Spio filicornis	7.1	5	184
169	Hippomedon denticulatus	6.4	5	23
153	Mandibulophoxus uncirostratus	4.8	5	20
127	Monoculodes spinipes	4.4	5	10
97	Diastylopsis dawsoni	4.4	5	20
303	Nephtys californiensis	4.0	4	7
27	Siliqua patula	3.8	4	18
156	Eohaustorius washingtonianus	3.7	3	15
154	Atylus tridens	2.8	3	14
279	Magelona sacculata	1.8	3	6
344	Spiophanes bombyx	1.7	2	5
9	Olivella pycna	1.6	3	8
110	Archeomysis grebnitzkii	2.2	5	9
460	Nemertea sp. \#5	1.3	3	5
94	Lamprops sp. \#l	1.0	5	4

* Includes Biological Index (BI), frequency of occurrence [f(5)], and mean number of individuals $/ \mathrm{m}^{2}\left(\mathrm{~N} / \mathrm{m}^{2}\right)$ of the 15 most dominant species.
dawsoni were also dominant species in assemblage $E$, especially the farthest offshore stations (114 and 115).

Species Groups
174. Classification of 357 species with present techniques was beyond the computational capacity of the CDC CYBER; therefore some form of species reduction was necessary. It has been noted by several authors that rare species carry little classificatory information (Boesch, 1973; Stephenson et al., 1975). In general, species that occurred at less than five stations were excluded from the analysis. The original 357 species were reduced to 158 species. The 199 eliminated species accounted for less than 1 percent of the total number of individuals found in the areal baseline. The species were divided into thirteen species groups (Figure C29). Twenty-five species were not included in any species group. Except for the wide-ranging species groups 10 and 11 , all species groups were described by the percent abundance, constancy and fidelity of the constituent species to assemblages or station groups (Fager, 1963; Clifford and Stephenson, 1975). The percent abundance of a species to an assemblage or station group is the percent of the total abundance of that species restricted to an assemblage or station group. The percent constancy of a species to an assemblage or station group is the percent frequency of occurrence of a species within an assemblage or station group. The percent fidelity of a species to an assemblage or station group is the percent occurrence of a species restricted to an assemblage or station group. Species groups 10 and 11 were described by the total number of individuals of a species obtained in the areal baseline and the percent of the stations and assemblages that the species was found. The dominance of a species within as assemblage or station group was defined as the Biological Index (BI) value (see Materials and Methods). Each species group is described in the following paragraphs. Biological index values of 0 are represented by a dash in the tables of species groups for visual clarification.
175. Species Group 1. Species group 1 (Table C20) consisted of 32 species which were found predominately at the most offshore stations

* Includes abundance, constancy, fidelity and Biological Index (BI) for each species in station group A,

Species

Species

Code
 웅 윽 $\underset{-}{m}$ $\stackrel{n}{\boldsymbol{H}} \underset{\sim}{\infty}$ 335
449 $\underset{ষ}{\underset{7}{8}}$ 465
 $\stackrel{\infty}{\sim}$ $\stackrel{\sim}{N}^{\mathrm{N}}$ 26
444
Musculus laevigata
Apistobranchus ornatus
Adontorhina cyclia五井 • ds əeptueptew Pista cristata Chaetodermatidae sp. \#l
Parandalia fauveli
Pandora filosa Eudorellopsis longirostris Westwoodilla caecula Oenopota turricula Praxillella affinis pacifica Munispio cirrifera Cossura nr. laeviseta Harmothoe nr. lunulata Myriochele heeri 96.2
100.0




Figure C29. Dendrogram of Dissimilarity Between Species-Areal Baseline
(station group $A_{1}, 75-97 \mathrm{~m}$ ). Only two species in species group 1 were dominant at station group $A_{1}$, the polychaetes Maldane sarsi ( $\mathrm{BI}=8.8$ ) and Magelona longicornis ( $B I=6.0$ ). The distribution of Maldane sarsi exemplifies the distribution of species included in species group 1 (Figure C30).
176. The percentage abundance of each species restricted to station group $A_{1}$ ranged from 70 to 100 percent with a mean of 89.9 percent. The constancy of species group 1 in station group $A_{1}$ ranged from 60 to 100 percent with a mean of 86.9 percent. The fidelity of species in species group 1 to station group $A_{1}$ ranged from 50 to 100 percent with a mean of 78.7 percent. Of the 4949 individuals that comprise species group 1 , 95 percent were restricted to station group $A_{1}$, 5 percent were found in station groups $A_{2}, A_{3}$, or $A_{4}$, and only seven individuals were found outside assemblage $A$.
177. Species Group 2. Species group 2 (Table C21) consisted of five species that were completely restricted to assemblage $A$ with maximum abundance found at station group $A_{1}$ and the northernmost stations in station group $A_{2}$ (stations 99, 143, 147, and 150). The constancy of species within group 2 to assemblage A ranged from 37 to 51 percent with a mean of 45 percent. The percentage abundance of these species restricted to assemblage A and fidelity to assemblage A was 100 percent. None of the species was dominant.
178. Species Group 3. Species group 3 (Table C22) consisted of two rare species predominately restricted to assemblage A. Only one individual of Nemertea sp. \#1 was found outside assemblage A. The constancy of both species to assemblage A was 42 percent.
179. Species Group 4. Species group 4 (Table C23) consisted of three species that were restricted to assemblage A. None of the species were found at station group $A_{4}$, and only one individual of Anthozoa sp . \#l was found at station group $A_{3}$. The percentage abundance restricted to assemblage $A$ and the fidelity to assemblage $A$ was 100 percent. The constancy of species group 4 to assemblage A ranged from 47 to 54 percent with a mean of 50 percent. None of the species was dominant.


[^0]
## Species Group 2.*

Species Code	Species	Abundance (\%)	Constancy   (\%)	Fidelity (\%)	BI
439	Ampharete arctica	100	41.7	100	-
443	Tharyx sp. \#3	100	51.2	100	-
292	Polydora sp. \#2	100	50.0	100	-
390	Nephtys ferruginea	100	37.5	100	-
459	Podarkeopsis brevipalpa	100	45,8	100	-

* Includes abundance, constancy, fidelity, and Biological Index (BI) for each spccics in assemblage $A$.

Table C22

Species Group 3.*

Species Code	Species	Abundance $\qquad$	$\begin{gathered} \text { Constancy } \\ \left(\frac{\circ}{0}\right) \\ \hline \end{gathered}$	$\begin{gathered} \text { Fidelity } \\ (\%) \\ \hline \end{gathered}$	BI
181	Argissa hamatipes	100.0	41.7	100.0	-
438	Nemertea sp. \#1	92.3	41.7	91.7	-

180. Species Group 5. Species group 5 (Table C24) consisted of four species primarily restricted to assemblage A. None of the species were dominant. The highest abundance of species group 5 was found at station group $A_{4}$. The percentage abundance restricted to station group $A_{4}$ ranged from 44 to 82 percent with a mean of 57 percent. The percentage abundance of species group 5 restricted to assemblage A ranged from 94 to 100 percent with a mean of 98 percent. Both Pectinaria granulata and Paraphoxus vigitegus were restricted to assemblage A. One individual of Trochachaeta franciscanum at station 145 and 19 individuals of Macoma nusuta were found in assemblage B. The constancy of species group 5 to assemblage A ranged from 58 to 83 percent with a mean of 70 percent.
181. Species Group 6. Species group 6 (Table C25) consisted of 43 species that were primarily restricted to assemblage A ( $60-97 \mathrm{~m}$ ). This included 8 of the top 10 numerically dominant species found in assemblage A, including Axionopsida serricata, Lumbrineris luti, Myriochele oculata, Mediomastus californiensis, Acila castrensis, Heteromastus filobranchus, Spiochaetopterus costarum, and Spiophanes berkeleyorum. The distribution of Lumbrineris luti exemplifies the distribution pattern of species group 6 (Figure C31 and C32).
182. The percentage abundance of species restricted to assemblage A ranged from 66 to 100 percent with a mean of 91.6 percent. The constancy of species group 6 to assemblage A ranged from 58 to 100 percent with a mean of 86.7 percent. The fidelity of species in species group 6 to assemblage A ranged from 41 to 100 percent with a mean of 80.8 percent. Of the 50,603 individuals that comprised species group 6 , only 5.4 percent were found in assemblage $B$ and less than $l$ percent at the remaining assemblages combined.
183. Species Group 7. Species group 7 (Table C26) consisted of seven species that were predominately found in assemblage $C$ and at stations 145, 146, 151, and 152. All of these stations were located in shallow water ( $18-47 \mathrm{~m}$ ) away from the mouth of the Columbia River. Two species, the polychaete Spiophanes bombyx ( $B I=7.76$ ) and the amphipoda

## Species Group 4.*

Species Code	Species	Abundance (\%)	$\qquad$	Fidelity (\%)	BI
337	Paraprionospio pinnata	100.0	54.1	100.0	-
377	Anthozoa sp. \#l	100.0	45.8	100.0	-
406	Asychis disparidentata	100.0	50.0	100.0	-

* Includes abundance, constancy, fidelity and Biological Index (BI) of species in assemblage $A$.

Table C24

## Species Group 5.*

Species Code	Species	Abundance (\%)	Constancy (\%)	Fidelity   (\%)	BI
243	Trochachaeta fransisconum	99.8	83.3	95.2	0.33
319	Pectinaria granulata	100.0	66.7	100.0	-
31	Macoma nusuta	93.9	58.3	60.8	0.33
142	Paraphoxus vigitegus	100.0	70.8	100.0	0.08

* Includes abundance, constancy, fidelity and Biological Index (BI) of species in assemblage $A$.


$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$

Table C25


* Includes abundance, constancy, fidelity, and Biological Index (BI) for species in assemblage A.



## 0 N H 0 0 0 0

Species
Code


## Species Group 7.*

Species Code	Species	Abundance (\%)	Constancy (\%)	Fidelity   (\%)	BI
141	Paraphoxus vigitegus	86.2	68.4	69.9	2.89
354	Thalenessa spinosa	94.7	68.4	76.5	1.02
155	Eohaustorius sencillus	95.1	100.0	50.0	7.13
344	Spiophanes bombyx	89.6	100.0	38.0	7.76
29	Macoma moesta alaskana	69.8	94.7	60.0	1.45
137	Paraphoxus epistomus	83.7	89.5	56.7	2.00
158	Photis lacia	63.4	78.9	62.5	-

* Includes abundance, constancy, fidelity, and Biological Index (BI) of species in assemblage $C$ and at stations $145,146,151$, and 152.

Table C27

## Species Group 8.*

Species Code	Species	Abundance   (\%)	Constancy   (\%)	Fidelity   (\%)	BI
95	Mesolamprops sp. \#1	84.0	53.1	74.0	0.11
98	Diastylopsis tenuis	90.7	53.1	85.0	-
143	Paraphoxus fatigans	87.0	46.9	83.3	1.03

* Includes abundance, constancy, fidelity, and Biological Index (BI) of species in assemblages $B$ and $C$.


Figure C3l. Distribution of Lumbrineris luti I


Figure C32. Distribution of Lumberineris luti II

Eohaustorius sencillus ( $B I=7.13$ ), were dominant at those stations. Except for the amphipoda Photis lacia, the remaining species were moderately dominant.
184. The percentage abundance of species group 7 restricted to thesc stations ranged from 63 to 95 percent with a mean of 83 percent. The constancy of species group 7 to those stations ranged from 68 to 100 percent with a mean of 86 percent. The fidelity of species group 7 to those stations was low with a range of $38-77$ percent and a mean of 59 percent.
185. Species Group 8. Species group 8 (Table C27) consisted of three species primarily restricted to assemblages $B$ and $C$. None of the species were dominant species in assemblages $B$ or $C$ except Paraphoxus fatigans at stations 142 , 146, and 151. All three species were most abundant at stations 142,146 , and 151 in the northern part of station group $B_{2}$.
186. The percentage abundance of each species restricted to assemblages $B$ and $C$ ranged from 84 to 91 percent with a mean 87 percent. The constancy of species to assemblages $B$ and $C$ ranged from 47 to 53 percent with a mean of 51 percent. The fidelity of species to assemblage $B$ and C ranged from 74 to 85 percent with a mean of 81 percent.
187. Species Group 9. Species group (Table C28) consisted of two species found in moderate depths in assemblages A, B, and C except station group $A_{l}$ (the deepest station group in assemblage A). Neither species was dominant. Both species had a high percentage abundance restricted to those stations ( $\overline{97}$ percent) and high fidelity ( $\overline{96}$ percent) but low constancy ( $\overline{58}$ percent) in those stations.
188. Species Group 10. Species group 10 (Table C29) consisted of four species which were wide-spread throughout all assemblages except $E$. Only Diastylopsis dawsoni, a cumacean, was found in assemblage E. Diastylopsis dawsoni was the dominant species in the areal baseline ( $B I=3.45$ ) with very high abundances in assemblage $B$.
189. Species Group 11. Species group ll (Table C30) consisted of 15 species which were widespread throughout the study area. The 15 species were found in every assemblage except assemblage $E$, where seven species were not found. The polychaetes Haploscoloplos elongatus ( $B I=2.17$ )

## Table C28

## Species Group 9.*

Species code	Species	Abundance (年)	$\begin{gathered} \text { Constancy } \\ (8) \\ \hline \end{gathered}$	$\begin{gathered} \text { Fidelity } \\ (\%) \end{gathered}$	BI
193	Euphilomedes carcharodonta	99.0	69.6	96.9	0.45
329	Lumbrineris bicirrata	94.6	45.6	95.5	-

## Table C29

Species Group 10.*

Species Code	Species	N	Station   (\%)	Assemblage $\qquad$	BI
316	Owenia collaris	893	52	80	0.91
408	Glycinda picta	226	45	80	0.24
463	Nemertea sp. \#6	73	31	80	0.04
97	Diastylopsis dawsoni	20,441	77	100	3.45

* Includes total number of individuals ( N ), percentage constancy to stations and assemblages and Biological Index (BI) for each species.

Species Group 11.*

Species   Code	Species	N	BI	Stations   (\%)	Assemblage (\%)
261	Haploscoloplos elongatus	1704	2.17	82	80
310	Northria iridescens	163	-	68	100
237	Chaetozone setosa	1080	2.32	83	100
302	Nephtys caecoides	365	0.38	61	100
425	Amphiodia periercta-urtica	1384	1.98	84	100
7	Olivella baetica	383	0.75	64	80
121	Ampelisca macrocephala	305	0.24	54	100
256	Glycinde sp. \#2	257	0.38	55	80
104	Colurostylis occidentalis	133	0.27	44	80
78	Paracaudina chilensis	964	1.02	30	80
198	Tecticeps convexus	348	0.34	47	80
127	Monoculodes spinipes	457	2.21	79	100
197	Bathycopea daltonae	287	0.51	60	100
27	Siliqua patula	186	0.33	48	100
36	Tellina modesta	527	0.91	42	80

[^1]and Chaetozone setosa ( $B I=2.32$ ) (Figures C33 and C34); the amphipoda Monoculodes spinipes $(B I=2.21)$ and the ophiuroid, Amphiodia perierctaurtica (BI $=1.98$ ) were dominant species in most assemblages.
190. Species Group 12. Species group 12 (Table C3l) consisted of 11 species which were predominantly found in the shallow-water sand assemblages $C, D$, and $E$. A few individuals ( 5.8 percent) were found in assemblage $B$, and only three individuals were found in assemblage $A$ (0.05 percent). The gastropoda Olivella pycna ( $B I=6.59$ ) and the polychaete Magelona sacculata ( $B I=7.41$ ) were dominant species at the shallowwater stations. The distribution of Magelona sacculata exemplifies this distribution pattern (Figure C35 and C36).
191. The percentage abundance of each species restricted to assemblages C, D, and E ranged from 73 to 100 percent with a mean of 92 percent. The constancy of species in assemblages C, D, and E ranged from 74 to 100 percent with a mean of 87 percent. The fidelity of species in species group 12 to assemblages $C, D$, and E ranged from 43 to 96 percent with a mean of 66 percent.
192. Species Group 13. Species group 13 (Table C32) consisted of two crustacean species, which were restricted to assemblage E and station group $D_{1}(13-26 \mathrm{~m})$, near the mouth of the Columbia River. Eohaustorius washingtonianus was moderately dominant ( $B I=2.61$ ) , and Lamprops sp. \#l was not dominant $(B I=0.67)$. The constancy of Lamprops sp. \#1 to assemblage $E$ and station group $D_{1}$ was 77.8 percent and Eohaustorius washingtonianus was 55.6 percent. Comparison of Species and Site Classification
193. A two-way coincidence table derived from the station $x$ species classification is summarized in Figure C37. Cell constancy was calculated as percentage occupancy for each station group, species group cell. A second two-way coincidence table was calculated for the cell constancy of each assemblage group, species group cell. Only species groups which contained more than five species were included in the second coincidence table (Figure C38).
194. The first six species groups (species groups l-6), including 88 species, were primarily restricted to station groups $A_{1-4}$ and can be con-

Species Group 12.*

Species Code	Species	Abundance (\%)	Constancy (\%)	$\begin{gathered} \text { Fidelity } \\ (\%) \\ \hline \end{gathered}$	BI
8	Olivella biplicata	97.3	77.6	88.2	2.41
9	Olivella pycna	92.2	86.3	73.9	6.59
140	Paraphoxus obtusidens major	93.0	84.5	89.1	0.88
279	Magelona sacculata	98.0	96.6	84.8	7.41
110	Archeomysis grebnitzkii	93.5	74.1	87.8	1. 81
3	Nassarius fossatus	84.2	51.7	83.3	0.15
471	Nemertea sp. \#7	97.5	60.3	92.1	0.70
153	Mandibulophoxus uncirostratus	100.0	53.4	100.0	1.61
169	Hippomedon denticulatus	100.0	43.1	100.0	1.76
303	Nephtys californiensis	73.2	50.0	78.4	0.56
460	Nemertea sp. \#5	86.8	43.1	78.1	0.55

## Table C32

Species Group 13.*



Figure C33. Distribution of Chaetozone setosa I


Figure C34. Distribution of Chaetozone setosa II


Figure C35. Distribution of Magelona sacculata I


Figure c36. Distribution of Magelona sacculata II

STATION GROUP

	$\mathrm{A}_{1}$	$A_{2}$	$A_{3}$	$A_{4}$	$\mathrm{B}_{1}$	$\mathrm{B}_{2}$	C	$\mathrm{D}_{1}$	$\mathrm{D}_{2}$	$\mathrm{D}_{3}$	E
1	85.9	27.0	3.9	17.2	1.2	-	0.6	-	0.4	-	-
2	64.0	50.0	15.0	-	-	-	-	-	-	-	-
3	55.0	50.0	12.5	-	-	-	3.6	-	-	-	-
4	53.3	70.1	8.3	16.7	-	-	-	-	-	-	-
5	60.0	78.1	87.5	62.5	12.5	14.3	-	-	-	-	-
6	91.6	90.9	63.9	69.7	25.6	10.6	13.7	1.8	11.3	-	0.9
7	2.8	3.5	-	35.7	32.8	46.9	92.3	17.1	25.0	28.5	11.4
8	-	-	25.0	16.7	60.0	33.3	46.6	1.3	25.0	8.3	-
9	6.6	87.5	75.0	100.0	50.0	50.0	33.3	-	6.2	-	-
10	62.2	71.8	100.0	37.5	90.0	85.7	30.0	41.0	34.4	-	20.0
11	36.6	45.8	86.7	56.6	91.3	82.9	62.6	52.2	82.5	28.3	21.3
12	1.0	1.5	2.2	-	23.4	49.4	57.0	76.7	63.6	68.1	61.8
13	-	-	-	-	-	-	-	-	-	50.0	80.0

Figure C37. Species Group Constancy at Station Groups (i.e. "Cell Density") Based on Station-Species Classification


Figure C38. Species Group Constancy in Assemblages (i.e. "Cell Density") Based on Station-Species Classification
sidered deeper water species. Species group 7 was found in the southern shallow water assemblage $C$ and to a lesser degree at moderate depths in assemblage $B$ and at station group $A_{4}$. Species group 8 was found at the same locations as species group 7 but with a higher constancy to assemblage B. Species group 9 was found at moderate depths in assemblages A, B, and C. Species groups 11 and 12 were found at all station groups with species group 11 having higher constancy to deeper station groups. Species group 12 was primarily restricted to shallow-water station groups and species group 13 was restricted to the shallowest station group $D_{3}$ and assemblage E.
195. Assemblage A contained moderate to very high constancy of three of the five most specious species groups (Figure C38). Assemblage B was characterized by very high constancy of species groups 7 and 12. Assemblage C was characterized by very high constancy of species group 7, which was primarily restricted to assemblage $C$ and high constancy of the two widespread species groups 11 and 12. Assemblage D had high constancy of the widespread species groups 11 and 12 , and assemblage E only had a high constancy of the widespread species group 12.
196. In summary, only assemblages $A$ and $C$ contained major species groups that were restricted to those assemblages. Assemblage B, C, and E contained primarily species groups which were found throughout the study area.

## Seasonal Baseline

197. Twenty-two station locations were chosen for the seasonal baseline (Figure C23). The station numbers for the twenty-two locations are presented in Table Cl. The seasonal sediment data for each location are presented in Table C33, and the community structure values are found in Table C34.
198. Bray-Curtis dissimilarity values were calculated between all seasons at each location for cruises C7412B-C7501D, C7504B, C7506C, C7509E and C7601A. Bray-Curtis dissimilarity values for presence and absence data were also calculated. The resultant index is the complement

Minco		Fomm	のํㅠがか		¢
	$\bigcirc{ }^{\circ} \dot{0}$			－゙べべゥ	$\stackrel{\circ}{\circ}$






Station 1
Dec 74－Jan 75
April 1975
June 1975
Sept． 1975
Jan． 1976
Station 2
Dec 74－Jan 75
April 1975
June 1975
Sept． 1975
Jan． 1976
Station 3
Dec 74－Jan 75
April 1975
June 1975
Sept． 1975
Jan． 1976
Station 4
Dec 74－Jan 75
April 1975
June 1975
Sept． 1975
Jan． 1976
Station 6
Dec 74－Jan 75
April 1975
June 1975
Sept． 1975
Jan．． 1976
Station 10
Dec 74－Jan 75
April 1975
June 1975
Sept． 1975
Jan． 1976


		สin mb				
			－－－－－	－i＊oin		


势に年～		気ずずす。	N゙゚NNNNN			min min $\sim_{\sim}^{\infty}$
	－～ioir			$\dot{\sim} \dot{\sim}$	－	ベぶべが


	$\stackrel{\sim}{0} \times \sim_{0}^{\infty}$	1우ํ N．ㄲ		웅웅N		iom $\mathrm{m}_{0} \mathrm{~m}_{0}^{\infty}$
¢ ¢ ¢ ¢ $\dot{\sim}$			がぶু®		ヘู่ ¢i¢	



Table C33（Continued）









$\frac{\text { Station } 11}{\text { Dec } 74-\operatorname{Jan}} 75$
April 1975
June 1975
Sept． 1975
Jan． 1976
Station 12
Dec 74－Jan 1975
April 1975
June 1975
Sept． 1975
Jan． 1976
Station 13
Dec 74－Jan 75
April 1975
June 1975
Sept． 1975
Jan． 1976
Station 14
Dec 74－Jan
April 1975
June 1975
Sept． 1975
Jan． 1976
Station 15
Dec 74－Jan 75
April 1975
June 1975
Sept． 1975
Jan． 1976
Station 16
Dec 74－Jan 75
April 1975
June 1975
Sept． 1975
Jan． 1976
Station 17
Dec 74－Jan 75
April 1975
June 1975
Sept． 1975
Jan． 1976


					읏NNung	
Oórimio	$\bigcirc 0^{\circ 0} 0^{\circ}$	$\bigcirc 0^{\circ 0} 0^{\circ}$	$\bigcirc 0 \times 0$		べゥがく	




	$\stackrel{0}{\sim}{ }^{-100088}$		¢ ¢ ¢ ¢ ¢ ¢	nin	$\stackrel{\sim}{n}$ ¢	© $\sim$ ¢ 9	긍․․․0．
$\cdots$－${ }_{0}$	$\bigcirc 0^{\circ 000}$		$\bigcirc \dot{\circ} \dot{\circ} \dot{\text { i }}$	$\bigcirc{ }^{\circ}$	mior		$\bigcirc 0^{\circ} 0{ }^{\circ}$



		88988 －0．0ㅇ	$00^{\circ \circ}$			
	－0．0ㅇ․	－0．0ㅇㅇ		下유우웅 －웅	－© © ©	
	 	NiNiNi		$\dot{\sim} \dot{\sim} \dot{\sim} \dot{m}$		ゅのかべの NiNiN



 ज $\dot{\sim}$

 が心ジゥ
 $\stackrel{\sim}{\sim} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{m} \underset{\sim}{m}$




$00^{\circ} 0^{\circ} 0^{\circ}$	－000


	○～～～～～
$\begin{aligned} & \pm \\ & \stackrel{9}{2} \\ & \stackrel{0}{E} \end{aligned}$	
－${ }_{\text {¢ }}^{\text {O }}$	

[^2]No sample

Station 1	$\mathrm{H}^{\prime}$	$J^{\prime}$	SR	S	$\mathrm{N} / \mathrm{m}^{2}$	$\mathrm{B} / \mathrm{m}^{2}$
Dec 74-Jan 75	3.768	0.741	5.887	34	544	1.3540
April 1975	3.728	0.793	4.412	26	578	0.9414
June 1975	4.120	0.779	6.342	39	800	3.0786
Sept. 1975	1.934	0.366	5.169	39	3118	1.7682
Jan 1976	2.858	0.632	3.850	23	606	0.6378
Station 2						
Dec 74-Jan 75	4.155	0.804	6.348	36	496	2.1110
April 1975	4.186	0.792	6.882	39	578	1.0354
June 1975	4.034	0.689	8.837	58	1266	2.2130
Sept. 1975	1.995	0.334	7.902	63	5114	2.0210
Jan. 1976	1.633	0.470	6.392	47	2670	1.4116
Station 3						
Dec 74-Jan 75	4.682	0.830	8.561	50	612	1.1184
April 1975	4.928	0.845	9.492	57	730	1.2896
June 1975	4.726	0.776	10.294	68	1342	2.4654
Sept. 1975	2.816	0.442	10.401	83	5310	2.0558
Jan. 1976	2.412	0.425	7.091	51	2308	1.7382
Station 4						
Dec 74-Jin 75	2.339	0.678	7.572	56	2856	23.4144
April 1975	2.817	0.470	8.903	64	2960	23.9885
June 1975	3.563	0.562	11.000	81	2880	18.5452
Sept. 1975	3.877	0.591	12.178	94	4146	22.6546
Jan. 1976	3.091	0.504	9.660	70	2530	24.8204
Station 6						
Dec 74-Jan 75	4.333	0.772	7.351	49	1370	2.5250
April 1975	4.409	0.743	8.487	66	2352	13.7906
June 1975	1.993	0.336	6.965	61	11018	35.1914
Sept. 1975	0.946	0.163	6.134	56	15670	25.1282
Jan 1976	3.804	0.667	7.367	52	2030	8.7600
Station 10						
Dec 74-Jan 75	3.363	0.792	3.794	19	230	1.2574
April 1975	4.062	0.875	5.040	25	234	0.7436
June 1975	3.968	0.809	5.295	30	478	1.0848
Sept. 1975	2.676	0.514	5.901	37	892	1.8036
Jan. 1976	3.560	0.798	4.080	22	344	1.6654
Station 11						
Dec 74-Jan 75	3.452	0.828	3.660	18	208	0.8110
April 1975	3.647	0.818	4.014	22	374	2.6316
June 1975	3.028	0.590	5.315	35	1500	4.2178
Sept. 1975	1.900	0.367	4.835	36	2786	7.1870
Jan. 1976	No sample					
Station 12						
Dec 74-Jan 75	2.789	0.625	4.410	22	234	2.0396
April 1975	3.159	0.672	4.329	26	644	3.6262
June 1975	2.880	0.536	5.883	42	2128	9.7246
Sept. 1975	2.110	0.411	4.672	35	2896	9.5252
Jan. 1976	3.677	0.792	5.116	25	218	3.1920
Station 13						
Dec 74-Jan 75	2.729	0.631	3.589	20	398	2.7778
April 1975	1.273	0.245	4.044	35	8968	6.8374
June 1975	1.388	0.265	4.473	38	7826	13.3060
Sept. 1975	2.448	0.521	3.747	26	1580	30.5072
Jan. 1976	No sample					


Station 14	$\mathrm{H}^{*}$	J'	SR	S	$\mathrm{N} / \mathrm{m}^{2}$	$\mathrm{B} / \mathrm{m}^{2}$
Dec 74-Jan 75	4.110	0.795	6.411	36	470	$\overline{3.6486}$
April 1975	1.059	0.189	5.511	49	12124	5.9090
June 1975	1.760	0.319	6.041	46	3436	5.1860
Sept. 1975	2.181	0.459	4.009	27	1.310	32.7444
Jan. 1976	2.745	0.658	3.411	18	292	2.0092
Station 15						
Dec 74-Jan 75	3.846	0.728	5.924	39	1222	3.4662
April 1975	2.649	0.449	7.236	60	6956	8.4408
June 1975	2.388	0.398	7.637	64	7654	52.2932
Sept. 1975	3.469	0.656	5.533	39	1922	45.0134
Jan 1976	3.751	0.720	6.052	37	766	11.2380
Station 16						
Dec 74-Jan 75	3.657	0.655	6.669	48	2300	10.9624
April 1975	0.393	0.070	5.137	50	27782	12.9752
June 1975	2.378	0.438	5.337	43	5234	118.2954
Sept. 1975	2.173	0.447	4.153	34	4326	73.0873
Jan. 1976	1.226	0.243	4.427	33	2754	4.3550
Station 17						
Dec 74-Jan 75	2.977	0.556	6.490	41	950	1.6794
April 1975	0.332	0.059	4.955	48	26320	1.5858
June 1975	1.747	0.322	5.036	43	8370	23.9742
Sept. 1975	2.173	0.447	4.153	29	2118	29.7808
Jan. 1976	0.726	0.145	3.973	32	4890	5.1258
Station 18						
Dec 74-Jan 75	4.505	0.820	7.451	45	734	1.2338
April 1975	4.752	0.830	8.478	53	922	1.5952
June 1975	4.727	0.777	9.977	68	1650	1.9506
Sept. 1975	3.861	0.612	10.445	79	3502	2.9180
Jan. 1976	3.523	0.645	6.904	44	1014	2.5274
Station 19						
Dec 74-Jan 75	4.221	0.789	9.074	40	462	1.6928
April 1975	4.243	0.849	5.792	32	422	1.0586
June 1975	4.513	0.792	8.477	52	820	1.9728
Sept. 1975	1.532	0.279	6.100	45	2714	2.2974
Jan. 1976	3.071	0.632	4.724	29	750	1.1032
Station 20						
Dec 74-Jan 75	3.232	0.808	3.272	16	196	1.8456
April 1975	4.345	0.885	6.339	30	194	1.3140
June 1975	3.731	0.727	6.042	35	556	3.1810
Sept. 1975	1.952	0.378	5.197	36	1682	2.4902
Jan. 1976	2.560	0.673	2.875	14	184	1.3558
Station 21						
Dec 74-Jan 75	1.855	0.416	3.704	22	580	0.5182
April 1975	3.739	0.827	4.391	23	300	0.5476
June 1975	2.355	0.589	2.487	16	832	1.1374
Sept. 1975	3.611	0.948	3.901	14	56	0.1612
Jan. 1976	No sample					
Station 22						
Dec 74-Jan 75	0.518	0.097	4.328	40	20.488	22.3042
April 1975	0.172	0.031	4.403	45	43.802	11.9920
June 1975	2.378	0.438	4.498	41	14.566	23.1216
Sept. 1975	1.593	0.352	3.128	23	2.666	62.0158
Jan. 1976	2.618	0.545	4.591	28	716	4.3700
Station 23						
Dec 74-Jan 75	4.104	0.743	7.105	46	1126	1.7278
April 1975	4.328	0.767	7.781	50	1086	2.9556
June 1975	3.428	0.601	7.039	52	2802	5.7724
Sept. 1975	2.222	0.410	5.459	43	4392	13.6666
Jan. 1976	3.759	0.727	5.719	36	910	6.0460

## Table C34 (Concluded)

Station 24	$\mathrm{H}^{\prime}$	$J$	SR	5	$\mathrm{N} / \mathrm{m}^{2}$	$\mathrm{B} / \mathrm{m}^{2}$
Dec 74-Jan 75	3.334	0.906	5.471	29	334	1.4008
April 1975	4.335	0.859	6.203	33	348	1.4096
June 1975	4.215	0.782	7.104	42	801	1.8898
Sept. 1975	2.075	0.376	6.246	46	2692	$1.486 \epsilon$
Jan. 1976	2.033	0.403	5.168	33	978	1. 5402
Station 25						
Dec 74-Jan 75	2.702	0.606	4. 186	22	302	3.3174
April 1975	3.362	0.617	5.670	37	1144	3.2452
June 1975	1.267	0.235	4.846	42	9454	10.9960
Sept. 1975	2.750	0.532	4.759	36	3126	17.3958
Jan. 1976	No sample					
Station 26						
Dec 74-Jan 75	2.862	0.602	4.611	27	562	5.8410
April 1975	1.383	0.284	3.533	26	2368	4.2732
June 1975	1.895	0.372	4.669	34	2346	4.9940
Sept. 1975	1.761	0.370	3.573	27	2894	33.9304
Jan. 1976	No sample					

* Parameters include diversity ( $H^{\prime}$ ), evenness ( $J$ '), species richness (SR), number of species (S), density ( $\mathrm{N} / \mathrm{m}^{2}$-individual $\mathrm{s} / \mathrm{m}^{2}$ ), and biomass ( $\mathrm{B} / \mathrm{m}^{2}$-grams ash-free dry weight $/ \mathrm{m}^{2}$ ).
of the Czekanowski similarity index or, as referred to in the text, the Czekanowski dissimilarity index. Values for both dissimilarity indices at all 22 locations are shown in Figure C39. Mean dissimilarity values less than 0.40 between seasons at the same station were considered low, indicating little seasonal change in the abundance of most dominant species and little seasonal change in species composition. Mean dissimilarity values greater than 0.50 between seasons at the same station were considered high, indicating considerable seasonal change in the abundance of most dominant species and considerable seasonal change in species composition. Dissimilarity values between 0.40 and 0.50 were considered moderate indicating some seasonal change. These values were chosen because station groups formed at approximately 0.40 Bray-Curtis units and assemblages formed at approximately 0.50 Bray-Curtis units. As indicated by the between station variability study, 0.25 Bray-Curtis units represent no detectable seasonal change in the abundance of dominant species or species composition. Seasonal changes in dominant species, community structure values, and sediment for each location are described in the following paragraphs.

Station 1
199. Station 1 was located in $17-20 \mathrm{~m}$ of water and was part of assemblage $C$ in the areal baseline study. The sediment was well-sorted sand and did not vary with season. The mean Bray-Curtis dissimilarity value between seasons (0.390) was low, indicating little seasonal change in the abundance of most macrofaunal species with season. The mean Czekanowski dissimilarity value ( 0.340 ) was also low, indicating little change in species composition with season.
200. The density of macrofauna ranged from 544 to 3118 individuals $/ \mathrm{m}^{2}$ with the highest values in June and September. Diversity (H') values were high from December 1974 to June 1975 and were much lower in September 1975 than January 1976. Evenness (J') values also were lower in September 1975 than January 1976. Species richness (SR) values ranged from 3.85 to 6.34 with the highest value in June 1975. Biomass values ranged from 0.94 to 3.08 g ash-free dry weight with the highest value in June 1975. 201. The major seasonal change in dominant species was an increase in


STATION 6


STATION 13


STATION 1


STATION 21


STATION 2


STATION 2


STATION 10


STATION 14


STATION 18


STATION 22


STATION 26


STATION 3


STATION 11


STATION 15


STATION 19


STATION 23


STATION 4


STATION 12


STATHON 16


STATION 20


STATION 24


I'igure C39. Bray-Curtis and Czekanowski Dissimilarity Between Seasons for 22 Seasonal Stations
the abundance of the polychaetes Spiophanes bombyx and Magelona sacculata in September 1975.

## Station 2

202. Station 2 was located in 29-35 m of water and was part of assemblage C in the areal baseline study. The sediment was well-sorted sand and did not vary with season. The mean Bray-Curtis dissimilarity value between seasons (0.440) was moderate, indicating some seasonal change in the abundance of most macrofaunal species with season. The mean Czekanowski dissimilarity value (0.377) was low, indicating little change in species composition with season.
203. The density of macrofauna ranged from 496 to 5114 individuals $/ \mathrm{m}^{2}$ with the higher values found in June 1975, September 1975, and January 1976. Diversity ( $\mathrm{H}^{\prime}$ ) values were high from December 1974 to June 1975 with much lower values in September 1975 and January 1976. Evenness (J') values were also lower in September 1975 and January 1976. Species richness (SR) values ranged from 6.35 to 7.90 with the highest values in June 1975 and September 1975. Biomass values ranged from 1.03 to 2.21 g ashfree dry weight $/ \mathrm{m}^{2}$ with the highest values in December 1974, June 1975, and September 1975.
204. The major seasonal change in dominant species was an increase in the abundance of Spiophanes bombyx in June 1975 through January 1976. Station 3
205. Station 3 was located in $45-53 \mathrm{~m}$ of water and was part of assemblage $C$ in the areal baseline study. The sediment was a well-sorted sand and did not vary with season. The mean Bray-Curtis dissimilarity value between seasons (0.441) was moderate, indicating some seasonal change in the abundance of most macrofaunal species with season. The mean Czekanowski dissimilarity value (0.382) was low, indicating little change in species composition with season.
206. The density of macrofauna ranged from 612 to 5310 individuals $/ \mathrm{m}^{2}$ with higher values found in June 1975, September 1975, and January 1976. Diversity ( $H^{\prime}$ ) values were high from December 1974 to June 1975 and were much lower in September 1975 and January 1976. Evenness (J') values were also low in September 1975 and January 1976. Species richness (SR) values
ranged from 7.09 to 10.40 with the highest values found in June 1975 and September 1975. Biomass values ranged from 1.12 to 2.47 g ash-free dry weight with the highest values in June 1975 and September 1975.
207. The major seasonal change in dominant species was an increase in the abundance of the polychaete Spiophanes bombyx in September 1975 and January 1976.
Station 4
208. Station 4 was located in $66-70 \mathrm{~m}$ of water and was part of assemblage $A$ in the areal baseline study. The sediment was a well-sorted sand with 5.6 to 6.2 percent silt and clay, except for December 1974 when only 3.1 percent silt and clay were found. The sediments varied little between seasons except for the low values of silt and clay found in December 1974. The mean Bray-Curtis dissimilarity value between seasons (0.347) was low, indicating little seasonal change in the abundance of dominant macrofaunal species with season. The mean Czekanowski dissimilarity value ( 0.381 ) was also low, indicating little change in species composition with season.
209. The density of macrofauna ranged from 2530 to 4146 individuals $/ \mathrm{m}^{2}$ with the highest value in September 1975. The diversity ( $\mathrm{H}^{\prime}$ ) values were moderately high from June 1975 to January 1976 with lower values in December 1974 and April 1975. Evenness ( $J^{\prime}$ ) values ranged from 0.47 to 0.59. Species richness (SR) values ranged from 7.57 to 12.18 with highest values in June 1975 and September 1975. Biomass values were consistently high with a range of 18.55 to 24.82 g ash-free dry weight $/ \mathrm{m}^{2}$.
210. The major seasonal changes in dominant species were a slight decrease in abundance of the bivalve Acila castrensis in June 1975, September 1975, and January 1976 and an increase in the abundance of the polychaete Spiophanes berkeleyorum in September 1975.

Station 6
211. Station 6 was located in $37-45 \mathrm{~m}$ of water and was part of assemblage $B$ in the areal baseline study. The sediment was well-sorted sand with 17.6-24.9 percent silt. The sediment varied little seasonably except for a slight increase in percent of clay in June 1975 and September
1975. The mean Bray-Curtis dissimilarity value between seasons (0.376) was low, indicating little seasonal change in the abundance of dominant macrofaunal species with season. The mean Czekanowski dissimilarity value (0.303) was also low, indicating little change in species composition with season.
212. The density of macrofauna ranged from 1,370 to 15,670 individuals $/ \mathrm{m}^{2}$ with the highest values in June 1975 and September 1975. Diversity (H') values were high in January 1975, April 1975, and January 1976 and were very low in June 1975 and September 1975. The evenness (J') values were also very low in June 1975 and September 1975. Species richness (SR) values ranged from 6.13 to 8.49. Biomass values ranged from 2.53 to 25.13 g ash-free dry weight $/ \mathrm{m}^{2}$ and were highest from April 1975 to September 1975.
213. The major seasonal change in dominant species was the high abundance values of the cumacean Diastylopsis dawsoni in June 1975 and September 1975.

Station 10
214. Station 10 was located in $15-17 \mathrm{~m}$ of water and was part of assemblage D in the areal baseline study. The sediment was well-sorted sand and did not vary with season. Sediment phi-size data were not available for April 1975 at station 10. The mean Bray-Curtis dissimilarity value between seasons (0.410) was moderate, indicating some seasonal change in the abundance of most macrofaunal species with season. The mean Czekanowski dissimilarity value (0.378) was low, indicating little change in species composition with season.
215. The density of macrofauna ranged from 230 to 892 individuals $/ \mathrm{m}^{2}$ with the highest value in September 1975. Diversity ( $H^{\prime}$ ) values ranged from 2.68 to 4.06 with the lowest value found in September 1975. The lowest evenness (J') value was also found in September 1975. Species richness (SR) values ranged from 3.79 to 5.90 with the lowest values in December 1974 and January 1975. Biomass values ranged from 0.74 to 1.80 $g$ ash-free dry weight $/ \mathrm{m}^{2}$ with the highest values found in September 1975 and January 1976.
216. The major seasonal change in dominant species was an increase
in the abundance of the polychaetes Spiophanes bombyx and Magelona sacculata in September 1975.
Station 11
217. Station 11 was located in $11-13 \mathrm{~m}$ of water and was part of assemblage E in the areal baseline study. The sediment was a well-sorted sand. January 1975 and June 1975 sediment samples contained 3.7 percent and 5.3 percent silt and clay, while April 1975 and September 1975 contained 1.2-1.3 percent silt and clay. Station 11 was not sampled in January 1976. The mean Bray-Curtis dissimilarity value between seasons (0.561) was high, indicating considerable seasonal change in the abundance of dominant species. The mean Czekanowski dissimilarity value between seasons ( 0.428 ) was moderate indicating some change in species composition with season.
218. The density of macrofauna ranged from 208 to 2786 individuals $/ \mathrm{m}^{2}$ with the highest values in June 1975 and September 1975. Diversity ( $H^{\prime}$ ) values were moderately high from January 1975 through June 1975 and low in September 1975. Evenness ( $J^{\prime}$ ) values were high in January 1975 and April 1975, moderate in June 1975 and low in September 1975. Species richness (SR) values ranged from 3.66 to 5.32 with the highest value in June 1975. Biomass values ranged from 0.81 to 7.18 g ash-free dry weight/m ${ }^{2}$ with the highest values in June 1975 and September 1975.
219. The major seasonal changes in dominant species were an increase in the abundance of the cumacean Diastylopsis dawsoni and the amphipoda Anisogammarus confervicolus in June 1975; the gastropoda Olivella biplicata in September 1975 and an increase in the polychaetes Spio filicornis and Nephtys californiensis and the amphipoda Monoculodes spinipes in June 1975 and September 1975.
Station 12
220. Station 12 was located in $15-16 \mathrm{~m}$ of water and was part of assemblage $D$ in the areal baseline study. The sediment was well-sorted sand and varied little with season. The mean Bray-Curtis dissimilarity value between seasons ( 0.565 ) was high, indicating considerable seasonal
change in the abundance of dominant species. The mean Czekanowski dissimilarity value between seasons (0.439) was moderate, indicating some change in species composition with season.
221. The density of macrofauna ranged from 218 to 2896 individuals $/ \mathrm{m}^{2}$ with the highest values in June 1975 and September 1975. Diversity ( ${ }^{\prime}$ ') values ranged from 2.11 to 3.68 with the lower values in June 1975 and September 1975. Evenness (J') values followed the same pattern with the lowest values in June 1975 and September 1975. Species richness (SR) ranged from 4.67 to 5.88 with the highest value in June 1975. Biomass values ranged from 2.04 to 9.72 g ash-free dry weight $/ \mathrm{m}^{2}$ with the highest values in June 1975 and Scptember 1975.
222. The major seasonal changes in dominant species were an increase in the abundance of the cumacean Diastylopsis dawsoni in June 1975 and an increase in the abundance of the polychaete Spio filicornis and the bivalve Siliqua patula in June 1975 and September 1975.

Station 13
223. Station 13 was located in $18-20 \mathrm{~m}$ of water and was part of assemblage $C$ in the areal baseline study. The sediment was a well-sorted sand in December 1974 with 3.5 percent silt and clay. In April 1975 the sediment was a less well-sorted sand with 15.0 percent silt and clay. In June 1975 the sediment was a poorly sorted clayey silt with 87.8 percent silt and clay. In September 1975 the sediment was a poorly sorted silty sand with 39.3 percent silt and clay. No sample was obtained in January 1976.
224. The mean Bray-Curtis dissimilarity value between seasons (0.652) was high, indicating considerable seasonal change in the abundance of dominant species. The mean Czekanowski dissimilarity value between seasons (0.576) was also high, inđicating considerable change in species composition with season.
225. The density of macrofauna ranged from 398 individuals $/ \mathrm{m}^{2}$ in December 1975 to 8,968 individuals $/ \mathrm{m}^{2}$ in April 1975 and 7,826 individuals $/ \mathrm{m}^{2}$ in June 1975. The density ( $\mathrm{H}^{\prime}$ ) values were low (1.27-2.73) with the lowest values in April 1975 and June 1975. Evenness (J') values were
also very low in April 1975 and June 1975. Species richness (SR) values ranged from 3.59 to 4.48. The biomass values increased from 2.78 g ashfree dry weight $/ \mathrm{m}^{2}$ in December 1975 to 30.51 g ash-free dry weight $/ \mathrm{m}^{2}$ in September 1975.
226. The major seasonal changes in dominant species were higher abundance values of the bivalve Siliqua patula in June 1975 and September 1975, the cumacean Lamprops sp. \#l in April 1975, the cumacean Diastylopsis dawsoni in April 1975 and June 1975; the amphipoda Monoculodes spinipes in April 1975; the amphipoda Paraphoxus milleri in June 1975, the polychaete Magelona sacculata in December 1974, and the polychaete Spio filicornis in April 1975.

Station 14
227. Station 14 was located in 31-33 m of water and was part of assemblage $D$ in the areal baseline. The sediment was a well-sorted sand with 1.1 percent silt and clay in December 1974. The percentage silt and clay increased to 5.2 percent in April 1975 and 5.1 percent in June 1975. In September the sediment was a poorly sorted silty sand with 29.9 percent silt and clay. In January 1976 the sediment was again a well-sorted sand with 1.4 percent silt and clay.
228. The mean Bray-Curtis dissimilarity value between seasons (0.633) was high, indicating considerable seasonal change in the abundance of dominant species. The mean Czekanowski dissimilarity value between seasons (0.516) was also high indicating considerable change in species composition between seasons.
229. The density of macrofauna ranged from 292 to 12,124 individuals $/ \mathrm{m}^{2}$ with the highest values in April 1975 and June 1975. The density ( $\mathrm{H}^{\prime}$ ) values were low except for the 4.11 value from December 1974. The lowest values of diversity were in April 1975 and June 1975. The evenness (J') values followed a similar pattern to diversity with the lowest values in April 1975 and June 1975. Species richness (SR) values ranged from 3.41 to 6.41 . Biomass values ranged from 2.01 to 32.74 g ash-free dry weight $/ \mathrm{m}^{2}$ with the highest value in September 1975.
230. The major seasonal changes in dominant species were an increased abundance of the bivalve Siliqua patula in June 1975 and September 1975; a very high abundance of the cumacean Diastylopsis dawsoni in April 1975 and June 1975, and the high abundance of the amphipoda Atylus tridens in April 1975.

Station 15
231. Station 15 was located in $42-46 \mathrm{~m}$ of water and part of assemblage $B$ in the areal baseline study. The sediment was well-sorted sand in December 1975 and January 1976 with 1.6 percent silt and clay in December 1974 and 5.0 percent silt and clay in January 1976. The sediments in April 1975 and September 1975 were poorly sorted silty sands with $21.0-23.3$ percent silt and clay. The sediment in June 1975 was poorly sorted sandy silt with 63.3 percent silt and clay.
232. The mean Bray-Curtis dissimilarity value between seasons (0.519) was high, indicating considerable change in the abundance of most dominant macrofaunal species. The mean Czekanowski dissimilarity value (0.465) was moderate, indicating some change in species composition with season.
233. The density of macrofauna ranged from 766 to 7654 individuals $/ \mathrm{m}^{2}$ with higher values in April 1975 and June 1975. Diversity ( $\mathrm{H}^{\prime}$ ) values were moderate with lower values (2.4-2.7) in April 1975 and June 1975 and higher values (3.5-3.8) in other seasons. Evenness (J') values were also lower in April 1975 and June 1975. Species richness (SR) values ranged from 5.53 to 7.64 with higher values in April and June 1975. Biomass values ranged from 3.46 to 52.29 g ash-free dry weight $/ \mathrm{m}^{2}$ with June 1975 and September 1975 having values higher than 45 g ash-free dry weight $/ \mathrm{m}^{2}$.
234. The major seasonal changes in dominant species were an increase in the abundance of the cumacean Diastylopsis dawsoni in April 1975 and June 1975, an increase in the abundance of the bivalve Siliqua patula in April 1975 through September 1975, and the high abundance of the amphipoda Atylus tridens in April 1975.

Station 16
235. Station 16 was located in $31-37 \mathrm{~m}$ of water and was part of
assemblage $B$ in the areal baseline study. The sediment was a poorly sorted silty sand in December 1974 and April 1975 with 34.2-37.1 percent silt and clay. The percentage silt and clay increased to 82.9 to 89.2 percent in the poorly sorted sandy silt sediment found in June 1975 and September 1975. The sediment was a well-sorted sand with 8.6 percent silt and clay in January 1976.
236. The mean Bray-Curtis dissimilarity value between seasons (0.579) was high, indicating considerable change in the abundance of dominant species with season. The mean Czekanowski dissimilarity value between seasons (0.455) was moderate, indicating some change in species composition with season.
237. The density of macrofauna ranged from 2300 to 27,782 individuals $/ \mathrm{m}^{2}$ with the highest value in April 1975. The diversity (H') values were low (0.39-2.38) except in January 1975 when the diversity was 3.66 . The evenness (J') values were also low (0.07-0.45) except in January 1975. Species richness (SR) values ranged from 4.15 to 6.67. The biomass values ranged from 4.36 to 118.30 g ash-free dry weight $/ \mathrm{m}^{2}$ with very high values in June 1975 and September 1975.
238. The major seasonal changes in dominant species were the low abundance of the cumacean Diastylopsis dawsoni in December 1974 and high abundance of the bivalve Siliqua patula in June 1975 and September 1975. Station 17
239. Station 17 was located in $31-33 \mathrm{~m}$ of water and was part of assemblage $B$ in the areal baseline. The sediment changed considerably with season with a range of 14.5 to 78.2 percent silt and clay. In January 1975, April 1975, and January 1976 the sediment was a well sorted silty sand with $14.5-26.7$ percent silt and clay of which $1.6-2.7$ percent was clay. In June 1975 the sediment was a poorly sorted clayey sand with 21.8 percent clay and in September 1975 the sediment was a poorly sorted sandy silt with 78.2 percent silt and clay.
240. The mean Bray-Curtis dissimilarity value between seasons (0.542) was high, indicating considerable seasonal change in the abundance of dominant species. The mean Czekanowski dissimilarity value between seasons (0.463) was moderate, indicating some seasonal change in species composition.
241. The density of macrofauna ranged from 950 to 26,320 individuals $/ m^{2}$ with the highest value in April 1975. Diversity (H') values were low with the highest value in January 1975 (3.00) and the values for other seasons ranging from 0.33 to 2.17. Evenness (J') values were also low with the highest values in January 1975 and September 1975. Species richness (SR) values ranged from 3.97 to 6.49. Biomass values were high in June 1975 and September 1975 with 23.97 and 29.78 g ash-free dry weight $/ \mathrm{m}^{2}$, respectively. The range of biomass values for January 1975, April 1975 and January 1976 was $1.68-5.13 \mathrm{~g}$ ash-free dry weight $/ \mathrm{m}^{2}$. 242. The major seasonal changes in dominant species were an increase in the abundance of the bivalve Siliqua patula in June 1975 and September 1975, and the very high abundance of the cumacean Diastylopsis dawsoni in April 1975 and high abundance in June 1975 and January 1976. Station 18
243. Station 18 was located in $40-46 \mathrm{~m}$ of water and was part of assemblage $C$ in the areal baseline study. The sediment was a well-sorted sand during all seasons. The percentage silt and clay was low (l.52.1 percent) in December 1974 and January 1976 and was higher April 1975 through September 1975 (5.1-12.1 percent).
244. The mean Bray-Curtis dissimilarity values between seasons (0.479) was moderate, indicating some change in the abundance of dominant species with season. The mean Czekanowski dissimilarity value between seasons (0.424) was moderate, indicating some change in species composition with season.
245. The density of macrofauna ranged from 734 to 3502 individuals $/ \mathrm{m}^{2}$ with the highest value in September 1975. The diversity ( $\mathrm{H}^{\prime}$ ) values were high in December 1974 through June 1975 with a slight decrease in September 1975 and January 1976. The evenness (J') values followed the same pattern as diversity. The species richness (SR) values ranged from 6.90 to 10.45 with the highest values found in June 1975 and September 1975. The biomass values were low with a range of 1.24-2.92 g ash-free dry weight $/ \mathrm{m}^{2}$.
246. The major seasonal change in dominant species was an increase
in the abundance of the polychaetes Spiophanes bombyx and Spiophanes berkeleyorum in September 1975.

Station 19
247. Station 19 was located in $29-31 \mathrm{~m}$ of water and was part of assemblage $C$ in the areal baseline study. The sediment was a well-sorted sand and did not vary with season. The mean Bray-Curtis dissimilarity value between seasons (0.404) was moderate, indicating some change in the abundance of most dominant macrofauna species with season. The mean Czekanowski dissimilarity values between seasons (0.351) was low, indicating little change in species composition with season.
248. The density of macrofauna ranged from 442 to 2714 individuals $/ \mathrm{m}^{2}$ with the highest value in September 1975. The diversity ( $\mathrm{H}^{\prime}$ ) values were high December 1974 through June 1975 and lower in September 1975. The evenness (J') values followed the same pattern with the lowest value in September 1975. The species richness (SR) values ranged from 4.72 to 8.48 . The biomass values ranged from 1.06 to 2.30 g ash-free dry weight $/ \mathrm{m}^{2}$ with the highest values in June 1975 and September 1975.
249. The major seasonal change in dominant species was an increase in the abundance of the polychaete Spiophanes bombyx in September 1975. Station 20
250. Station 20 was located in $22-24 \mathrm{~m}$ of water and was part of assemblage $D$ in the areal baseline study. The sediment was a well sorted sand, which varied little with season (1.0-1.l percent silt and clay) except in June 1975 when 5.2 percent silt and clay were present.
251. The mean Bray-Curtis dissimilarity value between seasons (0.539) was high, indicating considerable seasonal change in the abundance of dominant species. The mean Czekanowski dissimilarity value between seasons (0.469) was moderate, indicating some seasonal change in species composition.
252. The density of macrofauna ranged from 184 to 1682 individuals $/ \mathrm{m}^{2}$ with the highest value in September 1975. Diversity ( $\mathrm{H}^{\prime}$ ) values were moderately high from January 1975 to June 1975 and lower in September 1975 and January 1976. The evenness ( $J^{\prime}$ ) values were also lowest in September 1975 and January 1976. The species richness (SR)
values ranged from 2.88 to 6.34 with the highest values from April 1975 to September 1975. Biomass values ranged from 1.31 to 3.18 g ash-free dry weight $/ \mathrm{m}^{2}$ with the highest values in June 1975 and September 1975. 253. The major seasonal change in dominant species was an increase in the abundance of the polychaete Spiophanes bombyx in June 1975 and September 1975.
Station 21
254. Station 21 was located in 17-21 m of water and was part of assemblage $E$ in the areal baseline study. The sediment was a well-sorted sand in December 1974 and April 1975 with 1.3-1. 6 percent silt and clay. The percentage silt and clay was 16.9 percent in June 1975 and 7.0 percent in September 1975. No sample was obtained in January 1976.
255. The mean Bray-Curtis dissimilarity between seasons ( 0.588 ) was high, indicating considerable change in the abundance of dominant species with season. The mean Czekanowski dissimilarity value between seasons (0.430) was moderate, indicating some seasonal change in species composition.
256. The density of macrofauna ranged from 56 to 832 individuals $/ \mathrm{m}^{2}$. The diversity ( $\mathrm{H}^{\prime}$ ) was moderately high in April 1975 and September 1975 and low in January 1975 and June 1975. Evenness (J') values followed the same pattern as diversity. Species richness (SR) ranged from 2.49 to 4.39. Biomass ranged from 0.16 to 1.14 with the highest values in June 1975.
257. The major seasonal changes in dominant species were the high abundance of the polychaete Spio filicornis in January 1975 and June 1975; the increased abundance of the mysid Archeomysis grebnitzkii in April 1975 and June 1975, and the single high values of the amphipoda Paraphoxus obtusidens major in April 1975, the polychaetes Eteone sp. \#6 and Capitellidae sp. \#l and Nemertea sp. \#5 in June 1975.
Station 22
258. Station 22 was located in 22-33 m of water and was not part of any assemblage in the areal baseline study. Station 22 had the highest affinity with assemblage $B$. The sediment at station 22 varied considerably with season and was often layered. In December 1974, a well-
sorted sand layer with 10.8 percent silt and clay covered a poorly sorted sandy silt layer with 79.3 percent silt and clay. In April 1975 the same well-sorted sand layer with 11.7 percent silt and clay was found with no other layers. In June 1975 a poorly sorted sandy silt layer with 76.7 percent silt and clay covered a well-sorted silty sand layer with 20.8 percent silt and clay. In September 1975 , the sediment was a wellsorted silty sand with 27.4 percent silt and clay. In January 1976 the sediment was a well-sorted sand with 14 percent silt and clay.
259. The mean Bray-Curtis dissimilarity value between seasons (0.600) was high, indicating considerable change in the abundance of dominant species with season. The mean Czekancwski dissimilarity value between seasons (0.485) was moderate, indicating some change in species composition with season.
260. The density of macrofauna ranged from 716 to 43,802 individuals $/ \mathrm{m}^{2}$ with the highest values in January 1975 through June 1975. The diversity ( $\mathrm{H}^{\prime}$ ) values were low and ranged from 0.17 to 2.62. The lowest diversity values were found in January 1975 and April 1975. The evenness (J') values followed the same pattern with very low values in January 1975 and April 1975. Species richness (SR) values ranged from 3.13 to 4.59. Biomass values ranged from 4.37 to 62.02 g ash-free dry weight $/ \mathrm{m}^{2}$ with the highest value in September 1975.
261. The major seasonal changes in dominant species were a decrease in the abundance of the cumacean Diastylopsis dawsoni in September 1975 and January 1975 and the high abundance of the bivalve Siliqua patula in June 1975 and September 1975.

Station 23
262. Station 23 was located in 27-31 m of water and was part of assemblage $B$ in the areal baseline study. The sediment was a wellsorted sand and silty-sand with 10.1 to 29.3 percent silt and clay.
263. The mean Bray-Curtis dissimilarity value between seasons (0.379) was low, indicating little change in the abundance of dominant species. The mean Czekanowski dissimilarity value between seasons (0.273) was also low, indicating little change in species composition with season.
264. The density of macrofauna ranged from 910 to 4392 individuals $/ \mathrm{m}^{2}$ with the highest values in June 1975 and September 1975. The diversity ( ${ }^{\prime}$ ') values were high ( 3.42 to 4.33 ) except for the 2.22 diversity value for September 1975. Evenness (J') values were also high except for September 1975. The species richness (SR) values ranged from 5.46 to 7.78 with higher values from January 1975 through June 1975. The biomass values ranged from 1.73 to 13.67 g ash-free dry weight $/ \mathrm{m}^{2}$ with the highest values from June 1975 through January 1976.
265. The major seasonal changes in dominant species were an increase in the abundance of the cumacean Diastylopsis dawsoni in June 1975 and September 1975 and an increase in the abundance of the polychaete Spiophanes bombyx from June 1975 through January 1976. Station 24
266. Station 24 was located in $24-27 \mathrm{~m}$ of water and was part of assemblage $C$ in the areal baseline study. The sediment was a very wellsorted sand and did not vary with season. The mean Bray-Curtis dissimilarity value between seasons (0.433) was moderate, indicating some change in the abundance of dominant species with season. The mean Czekanowski dissimilarity values between seasons (0.33l) was low, indicating little change in species composition with season.
267. The density of macrofauna ranged from 334 to 2692 individuals $/ \mathrm{m}^{2}$ with the highest value in September 1975. The diversity ( $\mathrm{H}^{\prime}$ ) values were high January 1975 through June 1975 (range 3.33 to 4.33) and lower in September 1975 and January 1976. The evenness (J') values were also low in September 1975 and January 1976. The species richness (SR) values ranged from 5.16 to 7.10 with the highest values April 1975 through September 1975. The biomass values ranged from 1.41 to 1.89 g ash-free dry weight $/ \mathrm{m}^{2}$.
268. The major seasonal change in dominant species was an increase in the abundance of the polychaete Spiophanes bombyx in June 1975 through January 1976.

Station 25
269. Station 25 was located in 15-18 m of water and was part of assemblage $C$ in the areal baseline study. The sediment was a well-sorted
sand with 1.7 percent silt and clay in January 1975. In April 1975 the percentage silt and clay increased to 3.5 percent. In June 1975 the sediment was a silty sand with 28.2 percent silt and clay. In September 1975 the sediment was a poorly sorted silty clay with 38.2 percent silt and clay.
270. The mean Bray-Curtis dissimilarity value between seasons (0.601) was high, indicating considerable change in the abundance of dominant macrofaunal species with season. The mean Czekanowski dissimilarity values between seasons (0.467) were moderate, indicating some change in species composition with time.
271. The density of macrofauna ranged from 302 to 9454 individuals $/ \mathrm{m}^{2}$ with the highest value in June 1975. Diversity (H') values ranged from 1.27 to 3.36 with the lowest value in June 1975. The evenness ( $J^{\prime}$ ) values followed the same pattern as diversity with the lowest value in June 1975. Species richness (SR) values ranged from 4.19 to 5.67. Biomass values ranged from 3.24 to 17.40 g ash-free dry weight $/ \mathrm{m}^{2}$ with the highest values in June 1975 and September 1975.
272. The major seasonal changes in dominant species were an increase in abundance of the bivalve Siliqua patula in June 1975 and September 1975, an increase in the abundance of the cumacean Diastylopsis dawsoni in June 1975, and high abundance of the polychaete Spio filicornis in September 1975.

Station 26
273. Station 26 was located in $20-22 \mathrm{~m}$ of water and was part of assemblage $C$ in the areal baseline study. The sediment was a well-sorted sand in January 1976 with 1.2 percent silt and clay. In April 1975 the sediment was a poorly sorted sand with 16.1 percent silt and clay. In June 1975 and September 1975, the sediment was a poorly sorted silty sand with 48.1 to 52.4 percent silt and clay. Station 26 was not sampled in January 1976.
274. The mean Bray-Curtis dissimilarity value between seasons (0.535) was high, indicating considerable change in the abundance of dominant species with season. The mean Czekanowski dissimilarity values between seasons (0.458) was moderate, indicating some change in species composition with time.
275. The density of macrofauna ranged from 562 to 2894 individuals $/ \mathrm{m}^{2}$ with the highest values from April 1975 through September 1975. Diversity (H') values were low (1.38-1.90) except for the moderate value from January 1975 (2.86). Evenness ( $J^{\prime}$ ) values were also low except for a moderate value in January 1975. Species richness values ranged from 3.56 to 4.67 . Biomass values ranged from 4.27 to 53.93 g ash-free dry weight $/ \mathrm{m}^{2}$ with the highest value in September 1975.
276. The major seasonal changes in dominant species were an increase in the abundance of the bivalve Siliqua patula in June 1975 and September 1975 and the low abundance of the cumacean Diastylopsis dawsoni in January 1975.

## Experimental Site G

277. The experimental site was located in $25-30 \mathrm{~m}$ of water south of the mouth of the Columbia River ( $46^{\circ} 11.5^{\prime} \mathrm{N}, 124^{\circ} 6.0^{\prime} \mathrm{W}$ ). The substrate prior to disposal of dredged material was a well-sorted sand (Md $\varnothing \simeq 3.0 \varnothing$ ). Between 9 July and 27 August 1975, approximately 460,000 $m^{3}$ of dredged material was deposited on experimental site $G$. The material was dredged from the mouth of the Columbia River and was a coarser sand than the ambient substrate with a high percentage of $2.0-2.5 \phi$ size particles. The dredged material formed a circular deposit with a radius of 456 m and a maximum elevation of 1.5 m (Sternberg et al., 1977).
278. The experimental site was sampled on three cruises prior to disposal and on five cruises after the disposal of dredged material. The stations which were located in the experimental site or nearby for control (Figure C24) are listed in Table C2. The following sections describe the structure of benthic communities and distribution of station groups for each sampling period.

December 1974-January 1975
279. The six stations located near experimental site $G$ were part of assemblage $C$ in the areal baseline study. The six stations fused at 0.33 Bray-Curtis units to form one station group (Figure C26). The dominant species were the polychaete Magelona sacculata (BI $=9.50$ ),

R-32 (198)
SNOIIVIS

- R-24 (202)
R-31 (201)

Figure C40.
the amphipoda Eohaustorius sencillus (8.83), the polychaete Spiophanes bombyx (8.51), the polychaete Chaetozone setosa (5.42), and the ophuroid Amphiodia periercta-urtica (5.08).

280. The diversity ( $H^{\prime}$ ) values were high (3.33-4.32) with moderate species richness (SR) values (5.47-8.45) and high evenness (J') values ( 0.68 to 0.80 ). The density of macrofauna (334-560 individuals $/ \mathrm{m}^{2}$ ) and the biomass ( $0.61-1.93 \mathrm{~g}$ ash-free dry weight $/ \mathrm{m}^{2}$ ) were low.
April 1975
281. In April 1975 two statons were located in the experimental site $G$ region ( $\mathrm{R}-19, \mathrm{R}-24$ ). The two stations fused at 0.28 Bray-Curtis units. Dominant species were the amphipoda Eohaustorius sencillus (BI = 9.00), the polychaate Magelona sacculata (7.75), the amphipoda Monoculodes spinipes (7.25), and the polychaete Spiophanes bombyx (6.50). The diversity ( $H^{\prime}$ ) values were high ( 4.24 and 4.34 ) with moderate species richness (SR) values (5.79 and 6.02) and high evenness ( $J$ ') values ( 0.85 and 0.86). The density of macrofauna ( 348 and 422 individuals $/ \mathrm{m}^{2}$ ) and biomass ( 1.05 and 1.41 g ash-free dry weight $/ \mathrm{m}^{2}$ ) were low.
June 1975
282. In June 1975 eight stations were located in the experimental site region. The eight stations fused at 0.31 Bray-Curtis units to form one station group (Figure C40). Dominant species included the polychaete Spiophanes bombyx ( $B I=10.0$ ), the amphipoda paraphoxus obtusidens major (8.37), the polychaete Magelona sacculata (8.13), and the amphipoda Eohaustorius sencillus (5.88).
283. The diversity (H') values ranged from 2.75 to 4.51 with the highest evenness (J') values ( $0.52-0.79$ ) corresponding to the highest diversity values. Species richness (SR) values (6.30-8.48) were moderate. The density of macrofauna ranged from 629 to 920 individuals $/ \mathrm{m}^{2}$. Biomass values were slightly higher than in April 1975 with a range of 1.05-2.58 g ash-free dry weight $/ \mathrm{m}^{2}$.

September 1975
284. In September 1975, 26 stations were sampled at or near the experimental site. The location, description, and fate of the dredged material deposited on experimental site $G$ were described by Sternberg
et al. (1977). The twenty-six stations formed three station groups (Figure C41). Stations $\mathrm{K}-16, \mathrm{~K}-31$, and $\mathrm{R}-27$, all near the center of the disposal area formed one station group ( $F_{1}$ ) and were fused at 0.25 Bray-Curtis units. Stations $\mathrm{K}-9, \mathrm{~K}-14, \mathrm{~K}-18, \mathrm{~K}-22$, and $\mathrm{K}-38$, located in a circle around station group $\mathrm{F}_{1}$, formed the second station group $\left(G_{1}\right)$ and were fused at 0.27 Bray-Curtis units. The remaining 18 stations formed the third station group ( $\mathrm{H}_{1}$ ) and fused at 0.27 Bray-Curtis units. Station group $G_{1}$ and $H_{1}$ were closely related and fused at 0.29 BrayCurtis units. Station group $F_{1}$ fused with station groups $G_{1}$ and $H_{1}$ at 0.40 Bray-Curtis units.
285. The rank order of the nine most dominant species in station groups $G_{1}$ and $H_{1}$ was the same (Table C35). Station group $F_{1}$ had higher dominance of the cumacean Hemilamprops californiensis and the amphipoda Synchelidium rectipalmumi and a lower dominance of the amphipods Paraphoxus obtusidens major and Eohaustorius sencillus when compared to station groups $G_{1}$ and $H_{1}$. The overall dominant species were the polychaete Spiophanes bombyx ( $B I=9.92$ ), the polychaete Magelona sacculata (8.39), the cumacean Diastylopsis dawsoni (7.19), the amphipoda Paraphoxus obtusidens major (5.41), the polychaete Haploscoloplos elongatus (5.43), and the amphipoda Eohaustorius sencillus (4.16).
286. The density of macrofauna was highest (2308-6950 individuals $/ \mathrm{m}^{2}$ ) at station group $\mathrm{H}_{1}$, lower at station group $G_{1}$ (1196-2350 individuals $/ \mathrm{m}^{2}$ ), and much lower at station group $\mathrm{F}_{1}$ (572-752 individuals $/ \mathrm{m}^{2}$ ). If the polychaete Spiophanes bombyx were excluded, station group $H_{1}$ would still have a higher density (range 500-1070; mean, 736 individuals $/ \mathrm{m}^{2}$ ) followed by station group $\mathrm{G}_{1}$ (range 500-798; mean, 638 individuals $/ \mathrm{m}^{2}$ ) and station group $\mathrm{F}_{1}$ (range 486-534; mean, 512 individuals $/ \mathrm{m}^{2}$ ). The range of biomass values was $1.35-4.15 \mathrm{~g}$ ash-free dry weight $/ \mathrm{m}^{2}$. Station group $\mathrm{H}_{1}$ had a mean biomass value of 2.72 , followed by station group $F_{1}(2.48)$ and station group $G_{1}$ (2.04).
287. The diversity ( $H^{\prime}$ ) values were higher at station group $F_{1}$ (range 3.75-4.07) than station group $G_{1}$ (range 2.41-3.19) and much higher than station group $H_{1}$ (range 1.42-2.07). Evenness (J') values followed the same pattern with the highest values in station group $F_{1}$


Figure C4l. Dendrogram of Dissimilarity Between Stations-Experimental Site G (C7509E)

Table C35

Dominant Species (BI) Near Experimental
Site G September 1975.

Species

## code

344
279
97
140
261
155
237

Species
Spiophanes bombyx
Magelona sacculata
Diastylopsis dawsoni
Paraphoxus obtusidens major
Haploscoloplos elongatus
Eohaustorius sencillus
Chaetozone setosa
Olivella baetica
Monoculodes spinipes
Nephtys caecoides
Ampelisca macrocephala
Glycinde sp. \#2
Amphiodia periercta-urtica
Hemilamprops californiensis
Synchelidium rectiphmumi

STATION GROUPS

${ }^{\mathrm{H}} 1$	$\mathrm{G}_{1}$	$\mathrm{F}_{1}$
10.00	10.00	9.33
8.11	8.60	9.67
6.97	7.50	8.00
5.56	6.30	3.00
4.92	6.30	7.00
4.28	4.30	2.67
2.77	4.00	3.50
2.11	2.40	1.17
1.97	0.20	1.33
1.72	0.06	-
1.39	0.80	-
1.30	-	-
1.25	0.40	-
1.28	1.20	2.30
-	0.20	4.50

(range 0.70-0.77) followed by station group $G_{1}$ (range 0.45-0.59) and station group $H_{1}$ (range $0.26-0.40$ ). The species richness (SR) values ranged from 5.11 to 7.43 with a mean value of 6.73 in station group $F_{1}, 6.58$ in station group $G_{1}$, and 6.26 in station group $H_{1}$. October 1975
288. In October 1975, 13 stations were sampled at or near the experimental site. The 13 stations formed three station groups (Figure C42). Stations that were part of station groups $F_{1}$ and $G_{1}$ in September 1975 were all joined in October 1975 to form one station group ( $\mathrm{F}_{2}$ ) that included stations $\mathrm{K}-16, \mathrm{~K}-18, \mathrm{~K}-22, \mathrm{~K}-31$, and $\mathrm{R}-27$. These five stations joined at 0.36 Bray-Curtis units. Stations that were part of station group $H_{1}$ in September 1975 fused at 0.31 Bray-Curtis units in October 1975. These stations were further divided into station group $I_{2}$ that included stations $\mathrm{R}-24, \mathrm{R}-28, \mathrm{R}-29$ and $\mathrm{R}-31$ and fused at 0.24 Bray-Curtis units, and station group $G_{2}$ that included stations $K-7, K-11, K-26$, and R-33 and fused at 0.28 Bray-Curtis units. All stations fused at 0.48 Bray-Curtis units.
289. The rank order of the four most dominant species was the same at all station groups (Table C36). Station group $G_{2}$ had a higher dominance value for the gastropoda Olivella baetica than station group $I_{2}$ and a higher dominance value for the amphipoda paraphoxus obtusidens major than either station group $\mathrm{F}_{2}$ or $\mathrm{I}_{2}$. Station group $\mathrm{F}_{2}$ also had a higher dominance value for the gastropoda Olivella baetica than station group $I_{2}$ and had higher dominance values for the gastropoda Olivella pycna and the polychaete Spio filicornis than either station group $I_{2}$ or $G_{2}$. The overall dominant species were the polychaete Spiophanes bombyx ( $B I=9.79$ ), the polychaete Magelona sacculata (8.77), the amphipoda Eohaustorius sencillus (7.62), and the polychaete Chaetozone setosa (6.31).
290. The density of macrofauna was highest (2242-4202 individuals $/ \mathrm{m}^{2}$ ) at station group $\mathrm{I}_{2}$, followed by station group $\mathrm{G}_{2}$ (932-1406 individuals $/ \mathrm{m}^{2}$ ), and station group $\mathrm{F}_{2}\left(242-422\right.$ individuals $\left./ \mathrm{m}^{2}\right)$. If the polychaete Spiophanes bombyx were excluded, the same pattern of density


## Table C36

Dominant Species (BI) Near Experimental
Site G October 1975.

Species Code	Species	STATION GROUPS		
		$\mathrm{I}_{2}$	$\mathrm{G}_{2}$	$\mathrm{F}_{2}$
344	Spiophanes bombyx	10.00	10.00	9.46
279	Magelona sacculata	8.50	8.50	9.20
155	Eohaustorius sencillus	8.50	8.00	6.60
237	Chaetozone setosa	5.00	6.50	7.20
302	Nephtys caecoides	4.12	4.38	2.90
261	Haploscoloplos elongatus	3.00	2.25	1.50
256	Glycinde sp. \#2	2.63	-	0.20
471	Nemertea sp. \#7	2.25	1.00	0.20
341	Scoloplos armiger	1.88	-	-
7	Olivella baetica	1.75	4.88	4.00
121	Ampelisca macrocephala	1.75	-	-
140	Paraphoxus obtusidens major	1.63	4.50	1.10
408	Glycinde picta	1.63	-	-
9	Olivella pycna	-	1.38	4.50
343	Spio filicornis	-	-	3.20
425	Amphiodia periercta-urtica	0.25	1.75	1.10

would be found with the highest density of macrofauna at station group $I_{2}$ (range 456-638; mean, 544 individuals $/ \mathrm{m}^{2}$ ), followed by station group $G_{2}$ (range 366-448; mean, 405 individuals $/ \mathrm{m}^{2}$ ), and station group $\mathrm{F}_{2}$ (range 188-308; mean, 246 individuals $/ \mathrm{m}^{2}$ ). The range of biomass values was $0.41-2.88 \mathrm{~g}$ ash-free dry weight $/ \mathrm{m}^{2}$ with station groups $G_{2}$ (mean, 1.82 g ash-free dry weight $/ \mathrm{m}^{2}$ ) and $\mathrm{I}_{2}$ (mean, 2.21 g ash-free dry weight $/ \mathrm{m}^{2}$ ) having the highest biomass values. Station group $\mathrm{F}_{2}$ (range 0.41-1.29; mean, 1.020 g ash-free dry weight $/ \mathrm{m}^{2}$ ) had lower biomass values.
291. The diversity ( $\mathrm{H}^{\prime}$ ) values were highest at station group $\mathrm{F}_{2}$ (3.08-3.58), followed by lower values at station group $G_{2}$ (1.89-2.59) and the lowest values at station group $I_{2}$ (1.29-1.60). Evenness (J') values followed the same pattern with highest values in station group $F_{2}(0.60$ to 0.80$)$ followed by station group $G_{2}(0.40-0.51)$ and the lowest values in station group $I_{2}(0.25-0.34)$. The species richness (SR) values ranged from 3.99 to 5.63 with slightly lower values found in station group $\mathrm{F}_{2}$ (mean, 4.58) when compared to station group $\mathrm{G}_{2}$ (mean, 4.96) and station group $I_{2}$ (mean, 5.15).

January 1976
292. In January 1976, ll stations were sampled at or near the experimental site. The 11 stations formed three station groups (Figure C43). Three stations ( $\mathrm{K}-18, \mathrm{~K}-22$, and $\mathrm{K}-31$ ) that are part of station Group $\mathrm{F}_{2}$ in October 1975 and one station (K-7) from station group $\mathrm{G}_{2}$ joined at 0.39 Bray-Curtis units to form station group $\mathrm{F}_{3}$. Three stations ( $R-24, R-28$, and $R-31$ ) that were part of station group $I_{2}$ in October 1975 and station R-19 (not sampled in October 1975) fused at 0.32 BrayCurtis units to form station group $I_{3}$. Three stations ( $\mathrm{K}-11, \mathrm{~K}-26$, and R-33) that were part of station group $G_{2}$ in October 1975 fused at 0.31 Bray-Curtis units to form station group $G_{3}$. Station groups $G_{3}$ and $I_{3}$ fused at 0.39 Bray-Curtis units and then fused with station group $F_{3}$ at 0.50 Bray-Curtis units.
293. The rank order of the three most dominant species was the same in station groups $G_{3}$ and $I_{3}$ (Table C37). Station group $I_{3}$ had a higher dominance of the amphipoda Ampelisca macrocephala than the other


Dominant Species (BI) Near Experimental
Site G January 1976.

Species Code	Species	STATION GROUPS		
		$\mathrm{I}_{3}$	$\mathrm{G}_{3}$	$\mathrm{F}_{3}$
344	Spiophanes bombyx	10.00	10.00	5.75
279	Magelona sacculata	8.00	8.67	9.75
155	Eohaustorius sencillus	7.75	8.33	5.12
302	Nephtys caecoides	5.25	4.83	2.38
237	Chaetozone setosa	4.75	7.00	8.00
121	Ampelisca macrocephala	4.25	-	-
7	Olivella baetica	2.63	3.50	2.00
140	Paraphoxus obtusidens major	2.25	3.00	6.00
141	Paraphoxus vigitegus	2.25	0.33	-
471	Nemertea sp. \#7	1.75	1.16	0.25
310	Northria iridescens	1.00	2.50	-
425	Amphiodia periercta-urtica	1.00	1.83	0.88
9	Olivella pyena	0.75	2.13	3.25
8	Olivella biplicata	-	-	3.88
110	Archeomysis grebnitzkii	-	-	1.50

station groups. Station group $G_{3}$ had a greater dominance of the polychaete Chaetozone setosa than station group $I_{3}$. The polychaetes Spiophanes bombyx and Nephtys caecoides and the amphipoda Eohaustorius sencillus were less dominant in station group $F_{3}$ than the other station groups. The polychaete Chaetozone setosa and the gastropoda olivella pycna were more dominant in station group $\mathrm{F}_{3}$ than station group $\mathrm{I}_{3}$ and the gastropod olivella biplicata was more dominant in station group $F_{3}$ than other station groups. The overall dominant species were the polychaete Spiophanes bombyx ( $B I=8.45$ ), the polychaete Magelona sacculata (8.82), the amphipoda Eohaustorius sencillus (6.95), the polychacte Chaetozone setosa (6.55), and the polychaete Nephtys caecoides (4.09). 294. The density of macrofauna was highest in station group $I_{3}$ (range 750-1618; mean, 1234 individuals $/ \mathrm{m}^{2}$ ), followed by station group $G_{3}$ (range 338-554; mean 473 individuals $/ \mathrm{m}^{2}$ ), and lowest at station group $\mathrm{F}_{3}$ (range 148-350; mean, 230 individuals $/ \mathrm{m}^{2}$ ). If Spiophanes bombyx was not included, the density values would follow the same pattern with highest density values at station group $I_{3}$ (mean, 380 individuals $/ \mathrm{m}^{2}$ ), followed by station group $G_{3}$ (mean, 300 individuals $/ \mathrm{m}^{2}$ ), and the lowest values at station group $\mathrm{F}_{3}$ (mean, 207 individuals $/ \mathrm{m}^{2}$ ). The biomass values ranged from 1.10 to 2.79 g ash-free dry weight $/ \mathrm{m}^{2}$ with slightly higher values at station group $G_{3}$ (mean, l.91) than at station groups $I_{3}$ (mean, 1.39) and $F_{3}$ (mean, 1.45).
295. The diversity ( $\mathrm{H}^{\prime}$ ) values were highest at station group $\mathrm{F}_{3}$ (range 2.97-3.74; mean, 3.25) and station group $G_{3}$ (range 3.07-3.46; mean, 3.25), and lowest at station group $I_{3}$ (range 1.80-3.07; mean, 2.24). The evenness ( $J^{\prime}$ ) values followed the same pattern with high values at station groups $\mathrm{F}_{3}$ (mean, 0.74 ) and $\mathrm{G}_{3}$ (mean, 0.68 ) and lower values at station group $I_{3}$ (mean, 0.45). Species richness (SR) values ranged from 3.64 to 5.69 with slightly higher values at station groups $G_{3}$ (mean, 4.94) and $I_{3}$ (mean, 4.95) than station group $F_{3}$ (mean, 4.29). April 1976
296. In April 1976, 12 stations were sampled at or near experimental site G. The 12 stations formed two station groups (Figure C44).


Stations ( $\mathrm{R}-24, \mathrm{R}-28$, and $\mathrm{R}-31$ ) that were part of station groups $\mathrm{I}_{2}$ in October and $I_{3}$ in January 1976 together with station $R-33$ that was part of station group $G_{2}$ in October 1975 and $G_{3}$ in January 1976 fused at 0.29 Bray-Curtis units to form station group $I_{4}$. The remaining eight stations that were part of station groups $F_{1}$ and $G_{1}$ in September $1975, F_{2}$ and $G_{2}$ in October 1975 and $F_{3}$ and $G_{3}$ in January 1976, fused at 0.42 Bray-Curtis units to form station group $\mathrm{F}_{4}$. Station groups $\mathrm{F}_{4}$ and $\mathrm{I}_{4}$ fused at 0.52 Bray-Curtis units.
297. The polychaete Spiophanes bombyx, which was the dominant species at station group $I_{4}$, was not dominant at Station group $F_{4}$ (Table C38). The amphipoda Ampelisca macrocephala and the polychaete glycinde sp. \#2 had lower dominance values in station group $\mathrm{F}_{4}$ when compared to station group $I_{4}$. The following species had higher dominance values at station group $\mathrm{F}_{4}$ : the polychaete Spio filicornis, the mysid Archeomysis grebnitzkii, and the gastropoda Olivella pycna. The overall dominant species were the polychaete Magelona sacculata ( $B I=8.84$ ), the amphipoda Paraphoxus obtusidens major (7.86), the polychaete Chaetozone setosa (6.83), and the amphipoda Eohaustorius sencillus (5.38).
298. The density of macrofauna was higher at station group $I_{4}$ (range 746-2088; mean, 1349 individuals $/ \mathrm{m}^{2}$ ) than at station group $\mathrm{F}_{4}^{4}$ (range 172-308; mean, 248 individuals $/ \mathrm{m}^{2}$ ). If Spiophanes bombyx were excluded, the density of macrofauna would still be higher at station group $I_{4}$ (mean, 528 individuals $/ \mathrm{m}^{2}$ ) than station group $\mathrm{F}_{4}$ (mean, 241 individuals $/ \mathrm{m}^{2}$ ). The biomass values ranged from 0.44 to 2.72 g ashfree dry weight $/ \mathrm{m}^{2}$, with slightly higher values at station group $\mathrm{I}_{4}$ (mean, 1.66) compared to station group $\mathrm{F}_{4}$ (mean, 1.23).
299. The diversity ( $H^{\prime}$ ) values were higher at station group $F_{4}$ (range 3.71-4.15; mean, 3.99) than at station group $I_{4}$ (range 2.21-3.84; mean, 2.96). Evenness (J') values were also higher at station group $\mathrm{F}_{4}$ (mean, 0.84 ) than station group $\mathrm{I}_{4}$ (mean, 0.55). Species richness (SR) values were higher at station group $I_{4}$ (range 6.33-7.14; mean, 6.65) than station group $\mathrm{F}_{4}$ (range 4.97-6.12; mean, 5.45).

Dominant Species (BI) Near Experimental Site G April 1976.

Species Code	Species	STATION	GROUPS
		$\mathrm{I}_{4}$	$\mathrm{F}_{4}$
344	Spiophanes bombyx	10.00	1.13
279	Magelona sacculata	7.75	9.38
155	Eohaustorius sencillus	6.88	4.63
140	Paraphoxus obtusidens major	6.25	8.67
237	Chaetozone setosa	5.38	7.56
302	Nephtys caecoides	3.88	3.13
310	Northria iridescens	3.75	2.38
261	Haploscoloplos elongatus	3.13	0.31
121	Ampelisca macrocephala	3.00	-
256	Glycinde sp. \#2	2.13	-
341	Scoloplos armiger	1.38	-
8	Olivella pycna	-	1.81
127	Monoculodes spinipes	0.25	2.00
303	Nephtys californiensis	-	1.50
343	Spio filicornis	-	3.13
110	Archeomysis grebnitzkii	-	3.63
9	Olivella pycna	-	2.69

300. In June 1976, 12 stations were sampled at or near experimental site G. The 12 stations formed two station groups as in April 1976 (Figure C45). Stations (R-24, R-28, R-31, and R-33) that were part of station group $I_{4}$ and station K-ll fused at 0.27 Bray-Curtis units to form station group $I_{5}$. The remaining seven stations fused at 0.28 BrayCurtis units to form station group $F_{5}$. Station groups $I_{5}$ and $F_{5}$ fused at 0.35 Bray-Curtis units.
301. The polychaete Spiophanes bombyx was not as dominant at station group $\mathrm{F}_{5}$ as $\mathrm{I}_{5}$ (Table C39). The cumacean Hemilamprops californiensis and the amphipoda Photis lacia were also more dominant at station group $I_{5}$. The amphipoda Paraphoxus obtusidens major was more dominant at station group $F_{5}$ than $I_{5}$. The overall dominant species were the polychaete Spiophanes bombyx ( $B I=9.41$ ), the amphipoda Paraphoxus obtusidens major (8.37), the polychaete Magelona sacculata (7.25), the polychaete Haploscoloplos elongatus (5.67), and the polychaete Chaetozone setosa (5.45).
302. The density of macrofauna was higher in station group $I_{5}$ (range 896-1446; mean, 1156 individuals $/ \mathrm{m}^{2}$ ) than station group $\mathrm{F}_{5}$ (488748; mean, 656 individuals $/ \mathrm{m}^{2}$ ). It the polychaete Spiophanes bombyx were excluded, the density of macrofauna would still be higher in station group $I_{5}$ (mean, 744 individuals $/ \mathrm{m}^{2}$ ) than station group $\mathrm{F}_{5}$ (mean, 656 individuals $/ \mathrm{m}^{2}$ ). The biomass values were slightly higher in station group $I_{5}$ (range $1.37-2.53$; mean, 2.14 g ash-free dry weight $/ \mathrm{m}^{2}$ ) than station group $F_{5}$ (range $0.99-2.28$; mean, 1.42 g ash-free dry weight $/ \mathrm{m}^{2}$ ).
303. The diversity ( $\mathrm{H}^{\prime}$ ) values were the same in station group $\mathrm{I}_{5}$ (mean, 3.95) as station group $\mathrm{F}_{5}$ (mean, 3.85). Evenness (J') values were also the same in both station groups. The species richness (SR) values were slightly higher in station group $I_{5}$ (range 6.79-8.31; mean, 7.40) when compared to station group $F_{5}$ (range 5.99-7.15; mean, 6.59).


Table C39

Dominant Species (BI) Near Experimental
Site G June 1976.

$\begin{gathered} \text { Species } \\ \text { Code } \\ \hline \end{gathered}$	Species	STATION GROUPS	
		$\mathrm{I}_{5}$	$\mathrm{F}_{5}$
344	Spiophanes bombyx	10.00	9.00
279	Magelona sacculata	6.50	7.79
140	Paraphoxus obtusidens major	6.30	9.85
261	Haploscoloplos elongatus	5.70	5.64
237	Chaetozone setosa	5.50	5.42
96	Hemilamprops californiensis	4.60	0.80
158	Photis lacia	3.80	-
110	Archeomysis grebnitzkii	3.40	2.07
155	Eohaustorius sencillus	2.30	3.14
95	Mesolamprops sp. \#1	2.00	4.50
345	Spiophanes berkeleyorum	1.20	0.29
310	Northria iridescens	0.80	-
121	Ampelisca macrocephala	0.80	0.14
302	Nephtys caecoides	0.60	-
127	Monoculodes spinipes	0.20	1.71
425	Amphiodia periercta-urtica	-	1.85
341	Scoloplos armiger	-	1.21
9	Olivella pycna	-	0.50
298	Notomastus lineatus	-	0.36
303	Nephtys californiensis	-	0.28
7	Olivella baetica	-	0.28

## Megafaunal Survey

304. The 67 metered beam trawls were separated into four site groups using group-average sorting of Bray-Curtis dissimilarity between all possible pairs of stations (Figure C46). One sample was not included in any site group. Twenty-three species were separated into five species groups by group-average sorting of Bray-Curtis dissimilarity values between all species pairs (Figure C47). Seven species were not included in any species group.
305. Site group A included 35 samples that were obtained from inshore locations on all cruises. The samples were dominated by the decapods Crangon alaskensis elongata ( $B I=3.11,5$ maximum value), Crangon stylirostris (2.94), Crangon franciscorum (2.57), Cancer magister (2.34), and the mysid Neomysis kadiakensis (1.69). Site group B included four samples obtained near experimental site G during October 1975 and December 1974. All samples had low abundance of individuals and few species. The dominant species was the decapoda Crangon stylirostris. Site group C included 19 samples that were located at intermediate depths (35-73 m) in the southern portion of the study area. The dominant species was the decapoda Crangon alaskensis elongata ( $B I=5.00$ ). The decapods Pagurus ochotensis (1.37), Nectocrangon alaskensis (1.31), the mysid Neomysis kadiakensis (1.26), and the ophiuroid Ophiura lutkeni (1.10) were common. Site group D consisted of eight samples, six of which came from the same location ( $\sim 46^{\circ} 9^{\prime} \mathrm{N}, 124^{\circ} 13^{\prime} \mathrm{W}$ ) in $80-90 \mathrm{~m}$ of water and two samples in 57 m of water north of that site. Dominant species included the ophiuroid Ophiura lutkeni ( $B I=3.75$ ), the decapods Pandalus jordani (2.87), Crangon alaskensis elongata (2.37), Crangon communis (1.62), followed by the ophiuroid Ophiura sarsii (1.25), the mysid Neomysis kadiakensis, and the decapods Spirotocaris avina (0.63), and Thysanoessa spinifera (0.63).
306. The 30 species were divided into 5 species groups (Table C40). Species group 1 consisted of nine species that were found at site group D and the deeper locations in site group C. The depth range for most of


Figure C46. Dendrogram of Dissimilarity Between Megafaunal


Figur 047 BRAY-curtis dissimlarity value
Figure C47. Dendrogram of Dissimilarity Between Megafaunal Species

## Megabenthic Species Groups.

Species Group 1

## 91 Ophiura sarsi

550 Crangon communis
553 Crangon sp. \#l
206 Spirotocaris gracilis
416 Armina californica
86 Ophiura lutkeni
565 Spirontocaris lamellicornis
554 Nectocrangon alaskensis
568 Thysanoessa spinifera

Species Group 2
561 Spirotocaris avina
563 Spirotocaris bispinosa

Species Group 5
210 Pagurus ochotensis
212 Pagurus quayleyi
203 Crangon alaskensis elongatus
570 Luidia foliolata
112 Neomysis kadiakensis

Species not grouped
513 Pagurus caurinus
111 Neomysis franciscorum
569 Euphausia pacifica
83 Amphiodia periercta
216 Cancer gracilis
82 Dendraster excentricus
548 Cancer oregonensis

Species Group 3
558 Pandalus jordani
566 Spirontocaris pusiola

Species Group 4
217 Cancer magister
520 Crangon franciscorum
204 Crangon stylirostris
3 Nassarius fossatus
8 Olivella biplicata
the individuals of this species group was $57-86 \mathrm{~m}$. Species group 2 consisted of two specics of Spirotocaris that were restricted to one location ( $49^{\circ} 9^{\prime} \mathrm{N}, 124^{\circ} 13^{\prime} \mathrm{W}$ ) in $80-86 \mathrm{~m}$ of water. Most of the individuals of these two species were found in April 1975. Species group 3 consisted of two species restricted to site group D (57-86 m). The two species were most abundant in April 1975 and September 1975, and few individuals were found in June 1975. Species group 4 consisted of three species of Crangon and two gastropods that were most abundant in site group A, the shallowest site group. Species group 5 consisted of 5 species that were found in most samples. The frequency of occurrence ranged from 49-87 percent.

## Baseline Studies

307. Five benthic assemblages and 12 station groups were found off the mouth of the Columbia River in December 1974-January 1975. Except for assemblage C (the southern inshore assemblage), there was little in common between assemblages found in this area and benthic assemblages reported from other parts of the Oregon-Washington continental shelf by Carey (1965, 1972), Bertrand (1971), Lie (1969), Lie and Kisker (1970), and Lie and Kelley (1970). The range of values of community structure parameters, such as diversity, density, and biomass, was greater in the study region than the range of values reported from the entire OregonWashington continental shelf. The influence of the Columbia River, primarily sediment deposition, probably accounts for the difference between benthic assemblages in the study site and the rest of the OregonWashington coast.
308. Seasonal variations of benthic community structure and species composition were considerable, especially at inshore locations exposed to sediment movement duc to winter storms and at locations affected by sedimentation from the Columbia River. The fluctuations of benthic communities, although related to seasonal environmental changes, were not completely yearly in periodicity. Comparison of benthic assemblages in January 1975 and January 1976 showed considerable yearly differences. The results from control locations sampled for experimental site $G$ in April and June 1976, compared to April and June 1975, support this conclusion. Yearly variations in benthic communities are probably related to yearly fluctuations in the intensity of winter storms and in the output of water from the Columbia River. The instability of populations of several species, such as Diastylopsis dawsoni, Atylus tridens, Spio filicornis, Spiophanes bombyx, and Siliqua patula, also contributes to yearly variations in community structure.
309. The structure and distribution of benthic assemblages were
related to depth. Depth is probably a composite of several environmental factors, including a reduced intensity of winter storms with depth, increased organic content of sediment with depth, and an increase in finer grained sediment with depth. Superimposed on the depth gradient was the influence of the Columbia River. Fine-grained sediment ( $\cong 4.5 \phi$ ) was deposited near disposal site $B$ during high river flow in spring. The substrate near disposal site $B$ therefore changed from sand during the winter months to silt after the spring deposition. The fine grained sediment was resuspended during winter storms and was transported in a northwesterly direction by bottom currents. Benthic communities located in this northwesterly direction experience increased amounts of silts and clays from the winter pulses of fine-grained material. All locations in the study site region were influenced by the Columbia River, directly by sedimentation and organic enrichment, or indirectly by increased primary productivity due to localized Columbia River induced upwelling (Anderson, 1972).
310. Most stations located directly off the mouth of the Columbia River (15-47 m water depth) were exposed to considerable seasonal changes in sediment type due to deposition of silt from the Columbia River. Benthic assemblages in this area had considerable seasonal changes and spatial differences in species composition and values of community structure parameters. In winter most stations ( $\mathrm{R}-13, \mathrm{R}-14, \mathrm{R}-15, \mathrm{R}-25$, and $\mathrm{R}-26$ ) in this area had a sandy substrate. Benthic assemblages had moderate diversity values and low density and biomass values. Inshore, these assemblages were dominated by the gastropoda olivella biplicata and the polychaete Magelona sacculata; offshore, by the holothuroid Paracaudina chilensis, the polychaetes Haploscoloplos elongatus, Heteromastus filobranchus, and Chaetozone setosa, and the bivalve Axinopsida scrricata. After deposition of fine-grained sediment with presumably high organic content, the assemblages had much higher density and biomass values and lower diversity values. The dominant species after deposition were the cumacean Diastylopsis dawsoni, the bivalve Siliqua patula, and sometimes the polychaete Spio filicornis and the amphipoda Atylus tridens.
311. Stations located in the northern part of disposal site $B$ (25-40 m depth) had sediments with high percentages of silt and clay during all sampling periods. The spring deposition increased the percentage of silt, but winter storms and currents did not transport all of the fine-grained material out of this region. Sediments in this region often had horizontal layers of silty and sandy sediments. Benthic assemblages in this region ( $\mathrm{R}-16, \mathrm{R}-17$, and $\mathrm{R}-22$ ) had the lowest diversity values and the highest density and biomass values of any assemblage in the study area. The cumacean Diastylopsis dawsoni was always a dominant species.
312. The sediments at areas located north of disposal site B (2570 m depth) had a higher percentage of silt and clay than sediments at the same depth south of the Columbia River. The fine grained sediment was transported north-northwesterly from near disposal site B by winter storms and bottom currents. The diversity of benthic assemblages increased northward and with increased depth. The biomass and density of macrofauna decreased northward and increased with increased depth. The mean Bray-Curtis and Czekanowski dissimilarity values between seasons ( $\mathrm{R}-6, \mathrm{R}-23$, and one station $\mathrm{R}-7$ that was not included in the results) were low, indicating little change in the abundance of most dominant macrofaunal species and species composition with season. The density and biomass of macrofauna was higher north of the Columbia River than south of the Columbia River at similar depths.
313. The sediment at stations located inshore and south of the Columbia River ( $\mathrm{R}-1, \mathrm{R}-2, \mathrm{R}-3, \mathrm{R}-10, \mathrm{R}-18, \mathrm{R}-19$, and $\mathrm{R}-24$ ) was a wellsorted sand and did not vary with season. The mean Bray-Curtis and Czekanowski dissimilarity values between seasons were low, indicating little change in species composition with season. The most apparent seasonal change in this benthic assemblage was the introduction of the large numbers of juvenile Spiophanes bombyx into the population in June and September 1975 (Figure C48). The increase in dominance of Spiophanes bombyx beginning in June 1975 decreased diversity and increased density at all stations (Figure C49). Station 24 was the only station occupied on all cruises. The abundance of Spiophanes bombyx did not decrease


Figure C48. Seasonal Abundance of Spiophanes bombyx in Assemblage C


Figure C49. Seasonal Changes of Values of Community Structure Parameters in Assemblage G
greatly at this station between January 1976 and June 1976. Results from three other control stations confirm the continued high abundancc of Spiophanes bombyx in this area. Station $R-20$ on the Columbia River delta and station $\mathrm{R}-23$ north of the Columbia River also had an increase in the abundance of Spiophanes bombyx in June 1975 and September 1975.
314. The sediment at stations located near the mouth of the Columbia River (10-25 m depth) was sand, which varied little with season. The mean Bray-Curtis and Czekanowski dissimilarity were high (R-11, R-12, and $\mathrm{R}-21$ ), indicating change in the abundance of dominant macrofauna and species composition with season. Diversity and species richness values and density were lower than for stations located on a sandy substrate at the same depths south of the Columbia River. Seasonal changes in species composition were also greater than at the southern stations. Dominant species at the deeper stations were the polychaete Magelona sacculata and the gastropoda Olivella biplicata in the winter; and inshore, the amphipods Hippomedon denticulatus, Mandibulophoxus uncirostratus, and Monoculodes spinipes, and the polychaete Spio filicornis. The most apparent seasonal change was an increase in the abundnace of spio filicornis in June 1975 and September 1975. Spio filicornis also increased in abundance at stations $\mathrm{R}-13$ and $\mathrm{R}-25$, which were near the mouth of the Columbia River.
315. Seasonal results for the benthic assemblage located farthest offshore (80-100 m depth, silty sand subtrate) were not presented in this report but were included in the discussion in order to relate depth to the structure of benthic assemblages off the mouth of the Columbia River. Station group A had the highest values of diversity and species richness in the areal baseline. The biomass and density of macrofauna, except in this study, were higher than any assemblage reported for the Oregon-Washington coast. The seasonal variation in sediment, species composition and community structure was minimal. This seasonal stability, high diversity, density, and biomass is probably related to three factors. First, the impact of winter storms is decreased with depth resulting in increased sediment stability. Second, several species of
tube dwelling polychaetes including Maldane sarsi, Spiochaetopterus costarum, and Myriochele oculata also increase sediment stability. Third, the sediments have high organic content (Gross et al., 1972) probably resulting from the Columbia River sediment deposition and the high primary productivity of this area.

## Experimental Site G

Effects of dredge material disposal
on benthic communities
316. The samples obtained from Experimental site $G$ were clustered using intrinsic attributes (species abundance values). The intrinsic and magnitude of dredged material deposition. Three types of data are available to describe the extent and magnitude of dredged material disposal: first, U.S. Army Corps of Engineers records on the disposal operations; second, observations of predisposal and postdisposal bathymetry; and third, textural analysis of predisposal and postdisposal sediments.
317. The hopper dredges HARDING and BIDDLE deposited sediments dredged from the mouth of the Columbia River an average distance of 213 m from the experimental site marker buoy (Charles Galloway, Army Engineers, Portland District, personal communication, in Sternberg et al., 1977). Approximately 80 percent of the sediments were deposited on the south and southwest side of the marker buoy, and 20 percent of the sediment was deposited on the northern side of the buoy.
318. According to bathymctric records (Sternberg et al., 1977), the greatest accumulation of dredged material was on the south and southwest side of the experimental site marker buoy. A relatively flat deposit with a radius of about 228 m was found around the buoy with the base of the steeper depositional slope found up to 456 m from the buoy. Comparing Figure Al23 in Sternberg et al. (1977) and Figure C24 in this study, stations $\mathrm{R}-27, \mathrm{~K}-14, \mathrm{~K}-16$, and $\mathrm{K}-18$ were located on the flat top of the dredged material deposit; stations $\mathrm{K}-7, \mathrm{~K}-9, \mathrm{~K}-22$, and $\mathrm{K}-31$ were located
on the slope of the dredged material deposit; and stations $\mathrm{R}-32, \mathrm{~K}-11$, and $\mathrm{K}-26$ were located near the base of the slope. The following stations were outside the area of deposition: $R-24, R-28, R-29, R-31, K-5, K-20$, $\mathrm{K}-27, \mathrm{~K}-28, \mathrm{~K}-36$, and $\mathrm{K}-40$. The remaining stations ( $\mathrm{R}-19, \mathrm{R}-33, \mathrm{~K}-1$, K-34, and $K-38$ ) were at the edge of the depositional area. The stations located on the flat top of the deposit received direct deposition of dredged material which accumulated to a maximum depth of 1.5 m . Benthic assemblages at those stations probably were cxposed to immediate burial by the dredged material. Benthic assemblages found along the slope of the dredged material deposit may have been exposed to immediate burial by dredged material or covered by the dredged material that was moved by currents generated by the fall and impact of disposed sediment (Sternberg et al., 1977). The depth of disposal material on the slope of the flat top dredged deposit was $0.3-0.6 \mathrm{~m}$. The benthic assemblages located near the base of the slope were probably not exposed to direct burial, but to a layer of dredged material less than $0.3-\mathrm{m}$ deep that was moved into this area by natural currents and currents created by the disposal operation (Sternberg et al., 1977). Benthic assemblages outside the disposal area were probably not directly affected by the disposal operation.
319. Predisposal sediments near experimental site $G$ were characterized by high factor loadings on the $2.75 \varnothing$ and $3.25 \phi$ grain size fractions (Sternberg et al., 1977). The sediments were well-sorted sand with a median phi-size of 2.75-3.10 $\varnothing$. The dredged sediment from the mouth of the Columbia River was also sand but had high factor loadings on the 2.00 and $2.50 \phi$ grain size fractions.
320. Postdisposal sediments collected from experimental site $G$ in September 1975 were characterized by high factor loadings on the 2.00 and $2.50 \not \subset$ phi sizes. Sediments at stations $\mathrm{K}-11, \mathrm{~K}-14, \mathrm{~K}-16, \mathrm{~K}-26, \mathrm{~K}-$ $31, \mathrm{~K}-34$, and $\mathrm{R}-37$ had high factor loadings on the $2.00 \phi$ size fraction. Sediments at stations $\mathrm{K}-7, \mathrm{~K}-9, \mathrm{~K}-18, \mathrm{~K}-22, \mathrm{~K}-38$, and $\mathrm{R}-32$ had high factor loadings on the $2.50 \varnothing$ size fraction. Sediments at stations $\mathrm{K}-20$, $\mathrm{K}-27, \mathrm{~K}-40, \mathrm{R}-24, \mathrm{R}-28, \mathrm{R}-29$, and $\mathrm{R}-31$ were characterized by high factor loadings on the $2.75 \varnothing$ and $3.25 \varnothing$ size class and were probably not affected by dredged disposal. Stations $K-5$ and R-33 had high factor loading on the $2.75 \phi$ size fraction.
321. In summary, it appears that all but stations $\mathrm{K}-20, \mathrm{~K}-27, \mathrm{~K}-40$, R-24, $R-28, R-29$, and $R-31$ were affected by dredged material. Stations $\mathrm{R}-27, \mathrm{~K}-7, \mathrm{~K}-9, \mathrm{~K}-14, \mathrm{~K}-16, \mathrm{~K}-18, \mathrm{~K}-22$, and $\mathrm{K}-31$ were located in the arca of greatest deposition. Benthic assemblages located in this area were probably exposed to rapid burial.
322. The samples obtained on the September 1975 cruise were therefore separated into three groups extrinsically and compared to the intrinsically derived clusters. The stätions that were exposed to direct burial by dredged material were intrinsically clustered together in station groups $F_{1}$ and $G_{1}$. The remaining stations that were not affected by dredged and material and those affected by dredged material but not direct burial were intrinsically clustered together in station group $H_{1}$. Two stations did not correspond to this pattern. Station $K-7$, which was affected by direct burial, was part of station $H_{1}$, and Station $K-38$ clustered with station group $G_{1}$.
323. In order to estimate the effects of dredged material disposal on benthic community structure at site $G$, the values of community structure parameters among the three groups of extrinsically derived stations were analyzed with the Kruskal-Wallis H-test (Table C41). All community structure parameter values had significant differences among the three station groups. A multi-comparison based on Kruskal-Wallis rank sums using Dunn's (1964) large-sample approximation for unequal sample sizes with a 0.10 experiment-wise error rate was used to determine the station groups that had significant differences in community structure values. The stations exposed to direct burial had a significantly higher diversity ( $H^{\prime}$ ) and evenness ( $J^{\prime}$ ) values and significantly lower density of macrofauna, when compared to the less affected station groups. The biomass and the species richness (SR) values were significantly higher at the stations exposed to direct burial when compared to the unaffected stations. No significant difference was found between the unaffected and intermediate stations.
324. In October 1975, 13 benthic stations were resampled. The sediments at stations unaffected by dredged material in September ( $\mathrm{R}-24$, $\mathrm{R}-28, \mathrm{R}-29$, and $\mathrm{R}-31$ ) still had high factor loadings on the $2.75 \phi$ and

Comparison of Values of Community Structure Parameters Between the Three Extrinsically Derived Station Groups Using a Kruskal-Wallis H-Test, Experimental Site G (September 1975).

Parameter	Unaffected	Intermediate	Direct Burial	P
$\mathrm{H}^{\prime}$ (diversity)	1.67	1.86	3.15	<0.005
J' (evenness)	0.30	0.34	0.58	<0.005
SR (species richness)	6.05	6.32	6.74	$<0.005$
$\overline{\mathrm{N}} / \mathrm{m}^{2}$ (density)	3948	2997	1300	$<0.001$
$\overline{\mathrm{B}} / \mathrm{m}^{2}$ (biomass)	2.02	2.59	3.23	<0.025

$3.25 \phi$ sediment size classes. The sediments at stations exposed to direct burial (R-27, $\mathrm{K}-7, \mathrm{~K}-16, \mathrm{~K}-18, \mathrm{~K}-22$, and $\mathrm{K}-31$ ) still had high factor loadings on the $2.00 \phi$ and $2.50 \phi$ sediment size class. Compared to September 1975, there was a reduction of the factor loadings on the $2.00 \phi$ sediment size class at some stations and an increase in the factor loadings on the $2.75 \phi$ sediment size class. The intermediate stations (R-33, K-11, and K-26) had the highest factor loadings on the $2.75 \phi$ sediment size class with a decrease in the factor loadings on the $3.25 \phi$ sediment size class when compared to September 1975.
325. The three station groups defined by sediment characteristics correspond with the intrinsically derived station groups except for Station K-7. The four stations unaffected by dredged disposal clustered together in station group $I_{2}$. The three stations that were intermediate together with station $K-7$ formed station group $G_{2}$, and the stations that were exposed to direct burial formed station group $\mathrm{F}_{2}$.
326. The same techniques (Kruskal-Wallis H-test with multiple comparison) that were used for the September experimental site data were used to estimate the effects of dredged material disposal on benthic community structures. All community structure parameter values had significant differences between station groups, except for species richness (SR) values. The stations exposed to direct burial had significantly higher diversity ( $H^{\prime}$ ) and evenness ( $J^{\prime}$ ) values when compared to unaffected stations. The density and biomass of macrofauna was significantly lower at stations exposed to direct burial when compared to unaffected stations. The difference between intermediate stations and those exposed to direct burial or to the unaffected stations with respect to diversity (H') and evenness (J') values and density of macrofauna could not be tested because the station groups did not contain an adequate number of samples. There was no overlap in the range of values of these parameters or rank values of these parameters between the three station groups.
327. In January 1975, 12 benthic stations were resampled. The sediments at stations unaffected by dredged material in September (R-24, R-28, and R-31) still had high factor loadings on the $2.75 \varnothing$ and $3.25 \varnothing$ sediment size classes. The stations exposed to direct burial (K-7, K-18, $\mathrm{K}-22$, and $\mathrm{K}-31$ ) all had high factor loading on the $2.50 \phi$ and $2.75 \varnothing$

Comparison of Values of Community Structure Parameters Between the Three Extrinsically Derived Station Groups Using a Kruskal-Wallis H-Test, Experimental Site G (October 1975).

## Station groups (mean value)

Parameter	Unaffected	Intermediate	Direct Burial	P
$H^{\prime}$ (diversity)	1.45	2.15	3.19	<0.01
J' (evenness)	0.30	0.43	0.68	$<0.01$
SR (species richness)	5.15	4.87	4.70	N.S.
$\overline{\mathrm{N}} / \mathrm{m}^{2}$ (density)	3130	1334	438	<0.01
$\overrightarrow{\mathrm{B}} / \mathrm{m}^{2}$ (biomass)	2.21	1.81	1.15	<0.025

## Table C43

Comparison of Values of Community structure Parameters Between the Two Extrinsically Derived Station Groups Using a Mann-Whitney U-Test, Experimental Site G (January, 1976).

Station Groups (mean Value)

Parameter	Unaffected	Affected	P
$H^{\prime}$ (diversity)	2.44	3.26	<0.10
$J^{\prime}$ (evenness)	0.49	0.73	<0.01
SR (species richness)	5.09	4.44	N.S.
$\overline{\mathrm{N}} / \mathrm{m}^{2}$ (density)	1098	236	<0.01
$\overline{\mathrm{B}} / \mathrm{m}^{2}$ (biomass)	1.42	1.66	N.S.

sediment size classes with moderate factor loadings on the $2.00 \phi$ sediment size class and no factor loadings on the $3.25 \varnothing$ sediment size class. The intermediate stations ( $\mathrm{K}-11$ and $\mathrm{K}-26$ ) had high factor loadings on the 2.75 ф size class as in October 1975. Station R-19 and R-33 had high factor loadings on the $2.75 \phi$ and $3.25 \phi$ sediment size class. Both stations had been intermediate stations as defined by sediment characteristics but were now considered to be unaffected stations because sediment characteristics had returned to that of the ambient substrate.
328. The three station groups defined by sediment characteristics corresponded with intrinsically derived station groups except for station R-33. Four of the five stations unaffected by dredged material disposal clustered together in station group $I_{3}$. The four stations exposed to direct burial clustered together in station group $\mathrm{F}_{3}$. The two intermediate stations plus R-33 clustered together to form station group $G_{3}$.
329. The sediment characteristics of the stations exposed to direct burial by dredged material and the intermediate stations had nearly identical sediment characteristics in January 1975. Therefore, the differences in community structure value between these groups of stations and the unaffected stations was compared with the use of the Mann-Whitney U-test (Table C43). The diversity ( $H^{\prime}$ ) and evenness ( $\mathrm{J}^{\prime}$ ) values were significantly higher at the stations affected by dredged material disposal and the density of macrofauna was significantly higher at the unaffected stations. No significant difference was found in the species richness (SR) values or the biomass of macrofauna.
330. In April 1976, 12 benthic stations were resampled. The sediments at stations unaffected by dredged material in January 1976 ( $\mathrm{R}-24$, $\mathrm{R}-28, \mathrm{R}-31$, and $\mathrm{R}-33$ ) still had high factor loadings on the $2.75 \phi$ and $3.25 \phi$ sediment size classes. The sediment at stations exposed to direct burial by dredged material ( $\mathrm{R}-27, \mathrm{~K}-7, \mathrm{~K}-16, \mathrm{~K}-18, \mathrm{~K}-22$, and $\mathrm{K}-31$ ) all had high factor loadings on the $2.50 \phi$ sediment size class and all but $\mathrm{R}-27$ had a high factor loading on the $2.75 \phi$ sediment size class. All the sediments at those stations had moderate factor loadings on the 2.00 $\varnothing$ sediment size class and no factor loading on the $3.25 \phi$ sediment size class. The sediments at the intermediate stations had high factor load-
ings on the $2.75 \phi$ sediment size class and moderate to low factor loading on all other sediment size classes.
331. The two station groups defined by sediment characteristics corresponded to the intrinsically derived station groups. Stations unaffected by dredged material disposal were station group $I_{4}$. Stations that were exposed to direct dredged material disposal or that were affected by dredged disposal formed station group $\mathrm{F}_{4}$.
332. The differences in community structure values between those stations affected by dredged material and those unaffected were compared with the Mann-Whitney U-test (Table C44). Diversity (H') and evenness (J') values were significantly higher at the stations affected by dredged material disposal ( $\mathrm{p}<0.01$ ). The species richness ( SR ) values and density of macrofauna were significantly higher at the unaffected stations ( $p<0.01$ ). The biomass values were somewhat higher at the unaffected stations ( $\mathrm{p}<0.20$ ).
333. In June 1976, the same 12 stations as in April 1976 were sampled. The sediments at stations unaffected by dredged material in January 1976 ( $R-24, R-28, R-31$, and $R-33$ ) still had high factor loadings on the $2.75 \phi$ and $3.25 \phi$ sediment size classes. The sediments at stations that were exposed to direct burial by dredged material ( $\mathrm{R}-27, \mathrm{~K}-7$, $\mathrm{K}-16, \mathrm{~K}-18, \mathrm{~K}-22$, and $\mathrm{K}-31$ ) had high factor loadings on the $2.50 \varnothing$ and $2.75 \phi$ sediment size classes, moderate factor loadings on the $2.00 \phi$ sediment size class, and no factor loadings on the 3.25 क sediment size class. The sediments at intermediate stations ( $\mathrm{K}-11$ and $\mathrm{K}-26$ ) had high factor loadings on the $2.75 \varnothing$ sediment size class and moderate factor loadings on the $2.00 \phi$ and $2.50 \phi$ sediment size class.
334. The two station groups defined by sediment characteristics corresponded with the intrinsically derived station groups except for station $K-11$. Stations unaffected by dredged material disposal plus intermediate station $K-11$ were clustered in station group $I_{5}$. The remaining stations that were affected by dredged material disposal clustered into station group $\mathrm{F}_{5}$.
335. The difference in community structure values between those stations affected by dredged disposal and those unaffected were compared

Comparison of Values of Community Structure Parameters Between the Two Extrinsically Derived Station Groups Using a Mann-Whitney U-test, Experimental Site G (April, 1976).

## Station groups (mean value)

Parameter	Unaffected	Affected	P
$H^{\prime}$ (diversity)	2.96	3.99	$<0.01$
J' (evenness)	0.55	0.84	$<0.01$
SR (species richness)	6.65	5.45	$<0.01$
$\overline{\mathrm{N}} / \mathrm{m}^{2}$ (density)	1349	248	$<0.01$
$\overline{\mathrm{B}} / \mathrm{m}^{2}$ (biomass)	1.66	1.23	$<0.20$

Table C45

Comparison of Values of Community Structure Parameters Between the Two Extrinsically Derived Station Groups Using a Mann-Whitney U-test, Experimental Site G (June, 1976).

Station groups (mean value)

Parameter	Unaffected	Affected	P
$H^{\prime}$ (diversity)	3.95	3.85	N.S.
J' (evenness)	0.70	0.72	N.S.
SR (species richness)	7.49	6.64	$<0.20$
$\overline{\mathrm{N}} / \mathrm{m}^{2}$ (density)	1220	730	<0.01
$\overline{\mathrm{B}} / \mathrm{m}^{2}$ (biomass)	2.06	1.53	$<0.10$

with the Mann-Whitney U-test (Table C45). The density and biomass of macrofauna were significantly higher at the unaffected stations ( $p<0.01$ ). The species richness (SR) values were somewhat higher at the unaffected stations ( $p<0.20$ ). There was no significant difference between values of diversity ( $H^{\prime}$ ) and evenness ( $J^{\prime}$ ) at the two sets of stations. Effects of dredged material disposal
on dominant species
336. The effects of dredged material disposal on the abundance of the 33 most dominant species at or near experimental site $G$ was estimated by the Friedman's two-way rank test (Tate and Clelland, 1957). Seasonal changes in abundance were also estimated by Friedman's two-way rank test. A total of ten stations ( $\mathrm{R}-24, \mathrm{R}-27, \mathrm{R}-28, \mathrm{R}-31, \mathrm{R}-33, \mathrm{~K}-7, \mathrm{~K}-16, \mathrm{~K}-18$, $\mathrm{K}-22$, and $\mathrm{K}-31$ ) and four sampling periods (September 1975, October 1975, April 1976, and June 1976) were included in the analyses. The remaining stations and sampling periods were not fully sampled, and therefore, could not be included.
337. There were significant seasonal differences in the abundance of 14 species ( $p<0.01$ ) and significant differences in abundance between stations for 12 species ( $p<0.01$ ). Table C46 is a summary of the results of the Friedman two-way rank test. A distribution-free multiple comparison test based on Friedman's rank sums for species abundances was used to determine which seasons and what stations were significantly different ( $p<0.06$ ) (Hollander and Wolfe, 1973).
338. Of the 12 species that had significant differences in abundance values between stations, 10 species had consistently (no overlap) higher abundances (mean rank/station) at the unaffected stations, when compared to stations that were affected by dredged material disposal. In all cases where the difference in abundances (rank sums) were significant (multiple comparison test), the station with the higher abundance value was an unaffected station and the station with the lower abundance value was an affected station. The species that had significantly higher abundances at control stations included the polychaetes Spiophanes bombyx, Nephtys caecoides, Glycinde sp \#2, Scoloplos armiger, and Northria iridescens, and the amphipods Eohaustorius sencillus, Ampelisca macrocephala, Paraphoxus vigitegus, Photis lacia, and Paraphoxus epistomius. The ophiuroid

A Summary of Significant Seasonal or Station Differences in Abundance of 33 Species In or Near Experimental Site G, Based on Friedman's Two-way Rank Test.

Species Code	Species	Seasons	Stations
7	Olivella baetica	p<.01	N.S.
344	Spiophanes bombyx	p<.01	p<. 01
140	Paraphoxus obtusidens major	$\mathrm{p}<.01$	N.S.
279	Magelona sacculata	p<. 01	N.S.
155	Eohaustorius sencillus	p<. 05	p<. 01
302	Nephtys caecoides	p<. 10	p<. 01
261	Haploscoloplos elongatus	p<. 01	N.S.
237	Chaetozone setosa	N.S.	p<. 05
425	Amphiodia periercta-urtica	N.S.	$\mathrm{p}<.01$
97	Diastylopsis dawsoni	p<. 01	N.S.
121	Ampelisca macrocephala	p<.01	$\mathrm{p}<.01$
9	Olivella pycna	N.S.	$\mathrm{P}<.01$
110	Archeomysis grebnitzkii	p<. 01	N.S.
471	Nemertea \#7	N.S.	N.S.
96	Hemilamprops californiensis	$\mathrm{p}<.01$	N.S.
343	Spio filicornis	$\mathrm{p}<.10$	$\mathrm{p}<.10$
95	Mesolamprops sp. \#l	p<. 01	N.S.
141	Paraphoxus vigitegus	N.S.	p<. 01
127	Monoculodes spinipes	p<. 01	$\mathrm{p}<.05$
256	Glycinde sp \#2	N.S.	$\mathrm{p}<.01$
29	Macoma modesta alaskana	p<. 01	N.S.
303	Nephtys californiensis	N.S.	p<. 05
341	Scoloplos armiger	p<. 10	$\mathrm{p}<.01$
104	Colurostylis occidentalis	p<. 01	N.S.
8	Olivella biplicata	N.S.	N.S.
354	Thalenessa spinosa	N.S.	N.S.
310	Northria iridescens	$\mathrm{p}<.05$	$\mathrm{p}<.01$
158	Photis lacia	p<. 10	$\mathrm{p}<.01$
137	Paraphoxus epistomus	N.S.	$p<.01$
27	Siliqua patula	N.S.	$\mathrm{p}<.10$
460	Nemertea sp \#5	$\mathrm{p}<.01$	$\mathrm{p}<.10$

Amphiodia periercta-urtica was also more abundant at control stations and station $\mathrm{K}-7$. The gastropoda Olivella pycna was most abundant at stations that were affected by dredged material disposal, except for station K-31. Eighteen of the remaining 19 species had approximately the same rank abundance at control and affected stations or had higher rank abundances at the control stations. The polychaete Spio filicornis had lower rank abundance at the control stations.
339. Significant differences in rank seasonal abundance were found in 14 species. The polychaete Haploscoloplos elongatus, the amphipods Ampelisca macrocephala and Monoculodes spinipes, the cumacean Mesolamprops sp \#l and Hemilamprops californiensis, and Nemertea sp \#5 all had lower rank abundance in October 1975 and April 1976. The cumacean Colurostylis occidentalis and the amphipoda Paraphoxus obtusidens major had lower rank abundance in October 1975. The highest rank abundance of the gastropoda Olivella baetica and the polychaetes Spiophanes bombyx and Magelona sacculata was in September and October 1975, while the cumacean Diastylopsis dawsoni and the bivalve Macoma modesta alaskana were most abundant only in September 1975. The mysid Archeomysis grebnitzkii was most abundant in June 1976. No relationship between seasonal abundance and differences in abundance between stations was evident.

Transportation of macrofauna to
experimental site G via dredged
material disposal.
340. There is very little evidence that transportation of species to the experimental disposal site via disposal activities was an important mechanism for the change in abundance of dominant species at experimental site G. The dominant species found at the area to be dredged are shown in Table C47. Diastylopsis dawsoni, Crangon stylirostris, Eohaustorius sencillus, Monoculodes spinipes, Nemertea sp \#5, and Nephtys californiensis were found at most inshore sand stations in both the areal and seasonal baseline. There was no increase in abundance of these species at stations affected by dredged material disposal compared to control stations.
341. Paraphoxus milleri, Eohaustorius washingtonianus, and Anisogammarus confervicolus were restricted to the mouth of the Columbia River and to areas near the mouth of the Columbia River both in the areal and seasonal baseline. Only a single specimen of Paraphoxus milleri was found (Station $\mathrm{K}-31$ ) at any of the affected or control stations in the disposal experiment. No specimens of Eohaustorius washingtonianus or Anisogammarus confervicolus were found at the affected or control stations.
342. Archeomysis grebnitzkii was also found at most inshore sand stations in both the areal and seasonal baseline with the highest abundances found in or near the mouth of the Columbia River. The abundance of Archeomysis grebnitzkii was higher at the stations affected by disposal in January 1976 and April 1976. The abundance values for Archeomysis grebnitzkii were higher at control stations in September 1975 and June 1976. The abundance values were the same in October 1975.
343. Spio filicornis was found at most inshore sandy stations in both the areal and seasonal baseline with the highest abundance near the mouth of the Columbia River. The abundance of Spio filicornis was higher at control stations September 1975 and was higher at stations that received dredged disposal material in October 1975, April 1976, and June 1976. The abundance values were the same in January 1976.

```
Table C47
```

Dominant Species Found in the Dredged Area.*

Species

Code	Species	BI	$\underline{f(5)}$	$\overline{\mathrm{N}} / \mathrm{m}^{2}$
110	Archeomysis grebnitzkii	9.6	5	195.6
145	Paraphoxus milleri	8.8	5	107.6
156	Eohaustorius washingtonianus	6.4	5	22.4
343	Spio filicornis	5.8	5	24.0
460	Nemertea sp \#5	5.6	5	16.0
127	Monoculodes spinipes	4.9	5	12.0
155	Eohaustorius sencillus	3.9	5	11.2
97	Diastylopsis dawsoni	2.5	5	11.2
488	Anisogammarus confervicolus	2.0	5	6.4
204	Crangon stylirostris	1.9	3	3.6
303	Nephtys californiensis	0	4	2.0

* Includes Biological Index (BI), frequency of occurrence [f(5)] and mean number of individuals $/ \mathrm{m}^{2}\left(\overline{\mathrm{~N}} / \mathrm{m}^{2}\right)$ for each species.


## Baseline

344. The distribution and community structure of macrobenthic assemblages along the Oregon-Washington continental shelf have been related to depth and substrate type (Carey 1965, 1972; Bertrand, 1971; Lie, 1969; Lie and Kelley, 1969; Lie and Kisker, 1970; and Kulm et al., 1975). In general, the density and biomass of macrofauna increases offshore to a maximum at the outer edge of the continental shelf. The diversity and evenness values of benthic assemblages as well as the number of species (species richness) also increases offshore. The above authors have reported three benthic assemblages, which occur in roughly parallel bands along the Oregon-Washington continental shelf, an inshore shallowwater sand assemblage ( $0-90 \mathrm{~m}$ depth), an intermediate silty-sand assemblage (50-164 m), and a deep-water mud asscmblage ( 80 m to slope). Kulm et al. (1975) also postulated a fourth assemblage associated with relict sand patches on the outer continental shelf. Preliminary information from samples collected by the authors on the outer continental shelf, south of Astoria Canyon tend to support Kulm et al. (1975).
345. Except for assemblage C , the species composition, biomass, and density of benthic assemblages off the mouth of the Columbia River was not similar to that reported from other benthic assemblages found on the Oregon-Washington continental shelf. Assemblage C (the southern inshore sand assemblage) may correspond to the shallow water sand-bottom assemblage reported from the Washington coast (Lie, 1969; Lie and Kisker, 1970; and Lie and Kelley, 1970) and the inshore assemblage on the central Oregon coast (Carey, 1972). Of the 21 most abundant species found in the shallow water sand-bottom assemblage along the Washington coast, 11 were also abundant at assemblage $C$ and 5 were present but rare. The remaining four species reported by Lie and Kisker (1970) may represent a difference in taxonomic opinion and may also be present in assemblage $C$.
346. Most of the dominant species of polychaetes and amphipods from assemblage $C$ were abundant at shallow sandy stations off the central

Oregon coast (Carey, 1972; Barnard, 1971). The density and biomass of macrofauna were similar among assemblage $C$, the shallow water sand-bottom community along the Washington coast, and the inshore sand assemblage off the central Oregon coast.
347. The distribution, community structure, and seasonal constancy of benthic assemblages found off the mouth of the Columbia River were interpreted in part to be the result of the same factors that influence benthic assemblages along the Oregon-Washington coast. These factors included an increase in silt, clay, and organic content in sediments offshore and an increase in sediment stability due to reduced sediment stirring by winter storms with depth. Superimposed on this depth gradient were the effects of the deposition of fine-grained sediments from the Columbia River and the high primary productivity of the area.
348. Diversity and species richness values were considered to be related primarily to sediment stability. The values of diversity and species richness increased offshore (Spearman rank correlation $p<0.001$ ), probably the result of the increased sediment stability due to decreased sediment stirring by winter storms. The high abundance of tube-dwelling polychaetes at deeper stations also increased sediment stability. The lowest values of diversity and species richness were calculated for stations that had considerable seasonal changes in sediment characteristics as a result of the deposition of fine-grained sediments at high flow of the Columbia River.
349. Biomass and density of macrofauna may be related to the organic content of sediments. The biomass and density of macrofauna were correlated with the percentage silt and clay of sediments (Spearman rank $\mathrm{p}<0.001$ ). The highest values of density and biomass were found at areas of high silt deposition. In this region, organic content of sediments is probably related to the percentage silt and clay in sediments.
350. The seasonal constancy of species composition was highest in areas that had little seasonal change in sediment grain-size distribution. Benthic assemblages exposed to deposition of fine-grained material by the Columbia River had the highest Czekanowski dissimilarity values (low constancy) between seasons of any stations in the study area. The seasonal
constancy of the abundance of dominant species was related with sediment stability. The between season Bray-Curtis dissimilarity values decreased with increasing sediment stability offshore (reduced stirring of sediments by storms) and were highest at stations that had the lowest seasonal stability because of deposition by the Columbia River.

## Experimental Site $G$

351. From 9 July 1975 to 26 August 1975, approximately $4.6 \times 10^{5} \mathrm{~m}^{3}$ of sediment was dredged from the mouth of the Columbia River and deposited at experimental site $G$ (Figure C3). The sedimentary deposit had a circular shape approximately 750 m in radius and 1.5 m in elevation. Calculations based on grain size and transport mechanisms suggested that the dredged material deposit was stable with time (Sternberg et al., 1977).
352. The station groups calculated from intrinsic species abundance values (Bray-Curtis dissimilarity, group average sorting strategy) were similar to station groups defined extrinsic data. The extrinsic data included U.S. Army Corps of Engineers records on the disposal operations, observations of predisposal and postdisposal bathymetry, and tex-tural analysis of predisposal and postdisposal sediments.
353. Nonparametric tests on postdisposal (September 1975) data showed a significant increase in diversity ( $H^{\prime}$ ) and evenness ( $J^{\prime}$ ) values and a significant decrease in density of macrofauna at stations exposed to direct burial by dredged material compared to stations not affected by dredged material. The biomass of macrofauna and species richness (SR) values were also significantly higher at stations exposed to direct burial. The values of community structure parameters at stations that were not exposed to direct burial but affected by dredged material disposal were intermediate between affected and unaffected stations. The community structure values at intermediate stations were significantly different from values calculated from affected stations but not significantly different from unaffected stations.
354. Two months (October 1975) and five months (January 1976) after disposal, stations exposed to direct burial still had significantly
higher values of diversity ( $H^{\prime}$ ) and evenness (J') and significantly lower density of macrofauna than unaffected stations. The species richness (SR) values were not significantly different, while the biomass of macrofauna was significantly higher at unaffected stations in October 1975 but not in January 1976.
355. Eight months (April 1976) after disposal, diversity (H') and evenness (J') values were still significantly higher at stations exposed to direct burial and species richness (SR) values and the density and biomass of vacrofana were significantly lower than unaffected stations. Ten months (June 1976) after disposal, diversity ( $H^{\prime}$ ) and evenness (J') values were the same at stations exposed to direct burial and unaffected stations, while species richness (SR) values and the density and biomass of macrofaun were still significantly higher at unaffected stations.
356. There was a significant reduction of the abundance of 11 species at stations exposed to direct dredged material disposal when compared to unaffected stations. The affected species included the polychaetes Spiophanes bombyx, Nephtys caecoides, Glycinde sp \#2, Scoloplos armiger, and Northria iridescens; the amphipods Eohaustorius sencillus, Ampelisca macrocephala, Paraphoxus vigitegus, Photis lacia and Paraphoxus vigitegus; and the ophiuroid Amphiodia periercta-urtica. The bivalve Olivella pycna was significantly more abundant at stations exposed to direct disposal than at unaffected stations. The higher abundance of most of the eleven species at unaffected stations persisted 10 months after disposal operations. The abundance of 13 species was not significantly different between affected and unaffected stations. These species included the gastropods Olivella baetica and Olivella biplicata; the bivalve Macoma modesta alaskana; the cumacean Diastylopsis dawsoni, Mesolamprops sp \#1, Hemilamprops californiensis, and Colurostylis occidentalis; the polychaetes Magelona sacculata, Haploscoloplos elongatus, and Thalenessa spinosa; the mysid Archeomysis grebnitzkii; the amphipoda Paraphoxus obtusidens major; and Nemertea sp \#7.
357. The principal short-term effects of offshore dredged material disposal on benthic assemblages include: (a) direct burial of the benthos by dredged material; (b) increased turbidity from the disposal
operations or resuspension of dredged material by waves and currents; (c) introduction of pollutants and organic matter; and (d) changes in sediment characteristics (Saila et al. 1972).
358. All the sediments collected from the entrance channel (dredged area) contained a low percentage of silt and clay ( $0.95-1.26$ percent by weight). Sediments at experimental site $G$ after disposal contained less than 2 percent silt and clay and the dredged material was a coarser sand than the ambient sediment. Turbidity levels at experimental site $G$ after disposal were low (Sternberg et al., 1977). The turbidity levels at experimental site $G$ during disposal and after disposal were the same as prior to disposal (Sternberg et al., 1977). It is therefore concluded that turbidity caused by the disposal operation or subsequent resuspension of sediment had no significant effect on macrobenthic assemblages.
359. The sediments at the entrance channel (dredged area) and the sediments at experimental site $G$ after disposal contained the same amount of several possible contaminates as ambient sediment at experimental site G (Robert Holton, Oregon State University, 1977, personal communication). Possible comtaminates measured included total sulfide, ammonia, oil and grease, and the metals cadmium, copper, iron, lead, magnesium, mercury, nickel, and zinc. In all cases the values of these contaminates were the same as would be expected from uncontaminated sediments (Robert Holton, Oregon State University, 1977, personal communication). The values of total organic carbon and nitrogen were low in the sediment dredged from the Columbia River and in the sediments at experimental site $G$ after disposal and were not significantly different from the values reported from the ambient sediment prior to disposal operations (Robert Holton, Oregon State University, 1977, personal communication). It is therefore concluded that benthic assemblages were not affected by the introduction of pollutants or conditions created by organic enrichment.
360. The stress from direct deposition of dredged material and burial of the benthos was probably the most important short-term factor affecting benthos at experimental site G. Assuming a capacity of approximately $2.3 \times 10^{3} \mathrm{~m}^{3}$ of dredged material for the hopper dredges

BIDDIE and HARDING, the $4.6 \times 10^{5} \mathrm{~m}^{3}$ of dredged material was deposited in 200 loads over a two month period.
361. The second possible short-term stress on the benthic assemblages at experimental site $G$ could be the change in sediment textural characteristics resulting from disposal. The sediments were changed from a well-sorted sand (Md $\phi=2.75$ to $3.00 \phi$ ) to a coarser less well-sorted sand (Md $\varnothing=2.00$ to $2.25 \phi$ ).
362. The most apparent effect of dredged material disposal on benthic assemblages at experimental site $G$ was the significantly lower abundance of 11 of the 33 most abundant species. The higher diversity (H') and evenness (J') values at stations exposed to direct dredged material disposal primarily reflect the lower abundance of spiophanes bombyx (the overwhelming dominant species in the study area) at affected stations. The disproportionate reduction in abundance of Spiophanes bombyx compared to other species at affected stations increased the equability (evemness $J^{\prime}$ ) of species abundances thus increasing diversity (H') values. The species richness (SR) values and the number of species were lower (except September 1975) at stations exposed to direct dredged material disposal, indicating that sone species were eliminated from the affected area.
363. It was evident that the reduction in abundance of Spiophanes bombyx at stations exposed to direct deposition of dredged material was primarily responsible for the lower density of macrofauna at those stations. If Spiophanes bombyx were excluded from density comparisons the stations exposed to direct dredged material disposal would still have a significant lower density of macrofauna compared to unaffected stations. The reduction of abundance of other species at affected stations also contributed to the lower density of macrofauna at those stations.
364. Ten of the 11 species that had significantly lower abundance at stations affected by dredged material disposal were part of species groups 7 and 11 in the areal baseline. The polychaete, Scoloplos armiger was not included in a species group. Species group 7 was primarily restricted to assemblage $C$ on the sandy substrate south of the Columbia River. Species group 11 was a widcsprcad species group, especially
abundant in assemblage $B$, and much less abundant in the assemblages near the mouth of the Columbia River (assemblages D and E).
365. Thirteen species had no significant difference in abundance between stations exposed to direct dredged material disposal and unaffected stations. One species from species groups 5, 8, and 10 and two species from species group 7 were represented. Also represented were three species from species group 11 (the widespread species group) and five species from species group 12, an inshore species group, especially abundant near the mouth of the Columbia River in assemblages D and E.
366. It would therefore appear that species primarily restricted to the sandy inshore assemblage $C$ (species group 7) south of the Columbia River were most affected by dredged material disposal. Species in species group 12 (assemblage $D$ and $E$ ), which were found near the mouth of the Columbia River, were least affected by dredged material disposal.
367. Repopulation of benthos in an area exposed to direct burial by dredged material can be accomplished by benthos burrowing up through the dredged material, benthos migrating into the area, reproduction and recruitment of benthos from outside the affected area, and introduction of new species as part of the dredged material (Saila et al., 1972).
368. There was very little evidence for transportation of benthos to the experimental disposal site via dredged material. Most of the dominant species at the dredged area were found in low numbers at experimental site $G$ prior to disposal. With the possible exception of the mysid Archeomysis grebnitzkii and the polychaete Spio filicornis, species dominant in the dredged area were either missing from the experimental site after disposal or had higher abundance at unaffected stations compared to stations exposed to direct dredged material disposal.
369. Although adequate information on recruitment on benthos from outside the affected area is not available it appears that the change in substrate resulting from disposal operations had little effect on the repopulation of benthos at experimental site G. Macrofauna retained on a 0.5 mm screen after disposal (September 1975) indicate a lower abundance of juveniles at stations exposed to direct disposal of dredged material compared to unaffected stations. The lower abundance of
juveniles at affected stations was probably the result of the disposal operation and not a reduced recruitment due to a change of substrate. The abundance of macrofauna retained on a 0.5 mm screen after disposal in October 1975, January 1976, and April 1976 was low with approximately equal abundances for most species at the stations exposed to direct dredged material disposal and unaffected stations. Spiophanes bombyx juveniles were more abundant at unaffected stations. In June 1976 the abundance of macrofauna retained on a 0.5 mm screen was higher than in October 1975, January 1976, and April 1976. There was little difference in abundance of juveniles at stations affected by dredged material and unaffected stations in June 1976.
370. Since the short-term repopulation of benthos into areas exposed to dredged material disposal was not primarily a result of the introduction of new species as part of the dredged material or recruitment via reproduction of species outside the area, most of the repopulation may have been accomplished by benthos burrowing up through the dredged material or benthos migrating into the area.
371. Although the sediment characteristics of the natural substrate at experimental site $G$ did not vary with season, the sediment surface was unstable due to stirring of the bottom by both winter and summer storms. The instability of the substrate was observed by Sternberg et al. (1977) during both winter and summer conditions. Sternberg et al. (1977) estimated that sediment movement as a result of bottom currents generated by winds occurred $0-11$ percent of the time during summer months and 66 percent of the time during winter months at experimental site G. These results agree with the conclusions by Komar et al. (1972) that shortperiod summer waves stir the bottom to depths of 90 m and long-period winter waves stir the bottom to depths of 125 m and possibly 200 m . During one winter storm, the sediment depth decreased approximately 0.5 m during a two-day period (Sternberg, University of Washington, 1976, personal communication). Macrobenthic species that exist on these conditions of sediment instability are probably adapted to burial by sediment and sediment movement.
372. The abundance of 13 species was not significantly affected by dredged material disposal. One species, Olivella pycna, had significantly higher abundance at affected stations. The three gastropods olivella baetica, olivella biplicata, and olivella pycna have hard shells capable of withstanding dredged material disposal. All three species also burrow in sand, and judging from photographs (Sternberg, University of Washington, 1976) of tracks made by Olivella spp., they can migrate considerable distances on the sediment surface. The bivalve Macoma modesta alaskana also has a hard shell and borrows into the sand. Four cumacea, Diastylopsis dawsoni, Mesolamprops sp \#l, Hemilamprops californiensis, and Colurostylis occidentalis were also not significantly affected by dredged material disposal. Adults of three cumacea were found in the plankton (Robert Holton, Oregon State University, 1977, personal communication) and are therefore capable of considerable horizontal migration. Most species of cumacea also burrow into the substrate. The three species of polychaetes Magelona sacculata, Haploscoloplos elongatus, and Thalenessa spinosa that were unaffected by dredged material disposal are nontube-dwelling, active species capable of considerable migration over the sediment surface and rapid burrowing through the sediment. The mysid Archeomysis grebnitzkii is commonly found on open sandy beaches in the surf zone and is capable of swimming considerable distances. The borrower Paraphoxus obtusidens major was the only amphipoda not significantly affected by dredged material disposal. Nothing is known about the biology of Nemertea sp \#7, but many nemerteans are active burrowers in the substrate. Thus, most of the species that were not significantly affected by dredged material disposal are active, motile species capable of borrowing up through the dredged material and also capable of rapid recolonization of dredged material by horizontal migration.
373. The abundance of five polychaetes, five amphipods, and one ophiuriod were significantly reduced by dredged material disposal. Two of the polychaetes, Nothria iridescens and Spiophanes bombyx, are tube dwelling and may not be capable of migrating up through the dredged material. The remaining three polychaetes Nephtys caecoides, Glycinde sp \#2, and Scoloplos armiger, are active nontube-dwelling species that
burrow through the sediment. Two amphipods, Paraphoxus vigitegus and Paraphoxus epistomis, are infauna species capable of limited burrowing. Eohaustorius sencillus, Ampelisca macrocephala, and Photis lacia live in tubes partially inserted in the sediment. The Amphiodia perierctaurtica complex were mostly juveniles. Adults were generally found in deeper water. Both Amphiodia periercta and $\underline{A}$. urtica are primarily surface feeders and do not burrow deep into the sediment.
374. In general the species affected by dredged material disposal were tube-dwelling polychaetes and amphipods and species that have limited ability to borrow through the sediment. Many of these species were primarily restricted to the inshore sand sediments south of the mouth of the Columbia River. The species not affected by dredged material disposal were shelled gastropods and mollusks, nontube-dwelling polychaetes, and cumacea. All of these species were active burrowers and migrate considerable distances over the sediment. These species generally had a wide distribution and were abundant on the Columbia River delta as well as south of the River.

Anderberg, M.R. 1973. Cluster analysis for applications. Academic Press, New York. 359 pp.

Anderson, C.G. 1972. Aspects of marine phytoplankton studies near the Columbia River, with special reference to a subsurface chlorophyll maximum. Pages 219-240 In: A.T. Pruter and D.L. Alverson, eds., The Columbia River and adjacent ocean waters, bioenvironmental studies. Univ. Washington Press, Seattle, Wash.

Barnard, J.L. 1971. Gammaridean Amphipoda from a deep-sea transect off Oregon. Smithsonian Contribution to Zoology. 61:1-86.
Barnes, C.A., A.C. Duxbury, and B.A. Morse. 1972. Circulation and selected properties of the Columbia River effluent at sea. Pages 41-80 In: A.T. Pruter and D.L. Alverson, eds., The Columbia River and adjacent ocean waters, bioenvironmental studies. Univ. Washington Press, Seattle, Wash.
Bertrand, G.A. 1971. A comparative study of the infauna of the central Oregon continental shelf. Ph.D. thesis, Oregon State University.
Bertrand, G.A., and A.G. Carey, Jr. Unpublished manuscript. A comparative study of the infaunal biomass and numerical density of the central Oregon continental shelf.
Boesch, D.F. 1971. Distribution and structure of benthic communities in a gradient estuary. Ph.D. Thesis, College of William and Mary, Virginia.
Boesch, D.F. 1973. Classification and community structure of macrobenthos in the Hampton Roads area, Virginia. Marine Biology. 21: 226-244.

Brillouin, L. 1962. Science and information theory, 2nd ed. Academic Press, New York.
Carey, A.G., Jr. 1965. Preliminary studies on animal-sediment interrelationships off the central Oregon coast. Ocean Sci. Ocean Enging. 1:100-110.

Carey, A.G., Jr. 1972. Ecological observation on the benthic invertebrates from the central Oregon continental shelf. Pages 422-433 In: A.T. Pruter and D.L. Alverson, eds., The Columbia River and adjacent ocean waters, bioenvironmental studies. Univ. Washington Press, Seattle, Wash.

Carey, A.G., Jr., and D.R. Hancock. 1965. An anchor-box dredge for deep-sea sampling. Deep-Sea Res. 12:983-984.

Carey, A.G., Jr., and H. Heyamoto. 1972. Techniques and equipment for sampling benthic organisms. Pages 378-408 In: A.T. Pruter and D.L. Alverson, eds., The Columbia River and adjacent ocean waters, bioenvironmental studies. Univ. Washington Press, Seattle, Wash. Clifford, H.T., and W. Stephenson. 1975. An introduction to numerical classification. Academic Press, New York.
Czekanowski, J. 1909. Zur differential diagnose de Neandertelgruppe. Korrepondenzblatt Deutsch. Ges. Antropol. Ethnol. Urgesch. 40:44-47.
Day, J.H., J.G. Field, and P. Montgomery. 1971. The use of numerical methods to determine the distribution of the benthic fauna across the continental shelf of North Carolina. J. Animal Ecol. 40:93-123.
Dayton, P.K., G.A. Robilliard, R.T. Paine, and L.B. Dayton. 1974. Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecol. Monogr. 44:105-128.
Dunn, D.J. 1964. Multiple comparisons using rank sums. Technometrics 6:241-252.

Duxbury, A.C. 1972. Variability of salinity and nutrients off the Columbia River mouth. Pages 135-150 In: A.T. Pruter and D.L. Alverson, eds., The Columbia River and adjacent ocean waters, bioenvironmental studies. Univ. Washington Press, Seattle, Wash. Elliott, J.M. 1971. Some methods for the statistical analysis of samples of benthic invertebrates. Freshwater Biological Association, Scientific Pub. 25.
Fager, E.W. 1957. Determination and analysis of recurrent groups. Ecology. 38:586-595.

Fenchel, T. 1967. The ecology of marine microbenthos. I. The quantitative importance of ciliates as compared with Metazoans in various types of sediments. Opelia. 1:121-157.

Field, J.G. 1969. The use of the information statistic in the numerical classification of heterogeneous systems. J. Ecol. 57:565-569.
Field, J.G. 1970. The use of numerical methods to determine benthic distribution patterns from dredgings in False Bay. Trans. Roy. Soc. Africa. 39:183-200.

Field, J.G., and G. McFarlane. 1968. Numerical methods in marine ecology. I. A quantitative similarity analysis of rocky shore samples in False Bay, South Africa. Zool. Aft. 3:119-137.

Goodman, D. 1975. The theory of diversity-stability relationships in ecology. Quart. Rev. Biol. 50:237-266.

Gross, M.G., A.G. Carey, Jr., G.A. Fowler, and L.D. Kulm. 1972. Distribution of organic carbon in surface sediment, Northeast Pacific Ocean. Pages 254-264 In: A.T. Pruter and D.L. Alverson, eds., The Columbia River and adjacent ocean waters, bioenvironmental studies, Univ. Washington Press, Seattle, Wash.
Hollander, M., and D.A. Wolfe. 1973. Nonparametric statistical methods. Wiley, New York. 503 pp.

Hurlbert, S.H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology. 52:577-586.
Jardine, N., and R. Sibson. 1971. Mathematical taxonomy. Wiley, London. 286 pp.
Komar, P.D., R.H. Neudeck, and L.D. Kulm. 1972. Observations and significance of deep-water oscillatory ripple marks on the Oregon continental shelf. In: D. Swift, D.B. Duane, and D.H. Pilkey, eds., Shelf sediment transport: process and pattern. Dowden, Hutchinson, and Ross, Stroudsburg, PA.
Kulm, L.D., R.C. Roush, J.C. Harlett, R.H. Neudeck, D.M. Chambers, and E.J. Runge. 1975. Oregon continental shelf sedimentation: Interrelations of facies distribution and sedimentary process. Journal of Geology. 83:145-175

Lance, G.N., and W.T. Williams. 1967. A general theory of classificatory sorting strategies. I. Hierarchical Systems. Computer J. 9:373-380.

Lie, U. 1969. Standing crop of benthic infauna in Puget Sound and off the coast of Washington. J. Fish. Res. Bd. Can. 26:55-62.
Lie, U., and J.C. Kelley. 1970. Benthic infauna communities off the coast of Washington and in Puget Sound: identification and distribution of communities. J. Fish. Res. Ba. Can. 27:621-651.
Lie, U., and D.S. Kisker. 1970. Species composition and structure of benthic infauna communities off the coast of Washington. J. Fish. Res. Bd. Can. 27:2273-2285.

Lloyd, M., and R.J. Ghelardi. 1964. A table for calculating the "equitability" component of species diversity. J. Amim. Ecol. 33:217-225. Lockett, J.B. 1963. Phenomena affecting improvement of the lower Columbia estuary and entrance. U.S. Army Corps of Engineers, Portland District. 79 pp .
Margalef, R. 1958. Information theory in ecology. General Syst. 3:36-71. McManus, D.A. 1972. Bottom topography and sediment texture near the Columbia River mouth. Pages 241-253 In: A.T. Pruter and D.L. Alverson, eds., The Columbia River and adjacent ocean water, bioenvironmental studies. Univ. of Washington Press, Seattle, Wash.

Neal, V.T. 1972. Physical aspects of the Columbia River and its estuary. Pages 19-40 In: A.T. Pruter and D.L. Alverson, eds., The Columbia River and adjacent ocean waters, bioenvironmental studies. Univ. Washington Press, Seattle, Wash.

Orloci, L. 1967. An agglomerative method for classification of plant communities. J. Ecol. 55:193-206.

Orloci, L. 1975. Multivariate analysis in vegetation rescarch. W. Junk, The Hague. 276 pp.
Paine, R.T. 1966. Food web complexity and species diversity. Am. Nat. 100:65-75.

Pielou, E.C. 1966. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13:131-144.

Pielou, E.C. 1975. Ecological diversity. Wiley-Interscience, New York. 165 pp.

Pruter, A.T., and D.L. Alverson, eds. 1972. The Columbia River estuary and adjacent ocean waters, bioenvironmental studies. Univ. Washington Press, Seattle, Wash.

Renfro, W.C., J.E. McCauley, B. Glenn, R.H. Bourke, D.R. Hancock, and S.W. Hager. 1971. Oceanography of the nearshore coastal waters of the Pacific northwest relating to possible pollution. Environmental Protection Agency, Water Pollution Control Research Series 16070 EOK 07/71. 2 vols.

Richardson, M.D. 1976. The classification and structure of marine macrobenthic assemblages at Arthur Harbor, Anvers Island, Antarctica. Ph.D. thesis. Oregon State University, Corvallis, Oregon.

Saila, S.B., S.D. Pratt, and T.T. Polgar. 1972. Dredge spoil disposal in Rhode Island Sound. Marine Science Technical Report Number 2, University of Rhode Island, Kingston. 48 pp.

Sanders, H.L. 1960. Benthic studies in Buzzards Bay. III. The structure of the soft bottom community. Limnol. Oceanogr. 5:138-153. Sanders, H.L. 1968. Marine benthic diversity: a comparative study. Am. Nat. 102:243-282.

Shamnon, C.E., and W. Weaver. 1963. The mathematical theory of communication. Univ. of Illinois Press, Urbana, Ill.

Simpson, E.H. 1949. Measurement of diversity. Nature. 163:688.
Shepard, F.P. 1954. Nomenclature based on sand-silt-clay ratios. J. Sediment. Petrol. 24:151-158.

Sneath, P.H.A., and R.R. Sokal. 1973. Numerical taxonomy. W.H. Freeman and Co., San Francisco, 573 pp .

Sorenson, T. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analysis of the vegetation on Danish commans. Biol. Skr. 5:1-34.

Stephenson, W. 1972. The use of computers in classifying marine bottom communities. Pages 463-473 In: R. Fraser, ed., Oceanography of the South Pacific 1972. New Zealand National Commission for UNESCO, Wellington, N.Z.

Stephenson, W., R.W. Smith, C.S. Greene, T.S. Sarason, D.A. Hotchkiss. 1975. Soft bottom benthos from an area of heavy waste discharge: Hierarchical classification of data. Report to the Southern California Coastal Water Research Project. December 1975.

Stephenson, W., W.T. Williams, and S.D. Cook. 1972. Computer analysis of Peterson's original data on bottom communities. Ecol. Monogr. 40:459-494.

Sternberg, R.W., J.S. Creager, W. Glassley, and J. Johnson. 1977. An investigation of the hydraulic regime and physical nature of bottom sedimentation at the Columbia River disposal site. Final Report, U.S. Army Corps of Engineers Contract DACW-57-75-C-0063, U.S. Army Waterways Experiment Station, Vicksburg, Miss.

Tate, M.W., and R.C. Clelland. 1957. Nonparametric and shortcut statistics. Interstate, Danville, Ill.
U.S. Army Waterways Experiment Station. 1973. Dredged Material Research. Miscellaneous Paper D-73-1. Waterways Experiment Station, Vicksburg, Miss.

Weinberg, G.G. 1971. Methods for the estimation of production of aquatic animals. Academic Press, New York.

## APPENDIX C-I

## STATION DATA

Table C-IA.* Station Data for Smith-McIntyre Grab Samples (pages 209-307). Table C-IB.* Station Data for Metered Beam Trawl Samples (pages 308-312).

* Reproduced on microfiche and enclosed in envelope attached to the inside of the back cover of this report.


## APPENDIX C-II

## Species Lists

Table C-IIA. Phylogenetic Species List (pages 314-330).

Table C-IIB.* Alphabetical Species List (pages 331-356).
Table C-IIC.* Numerical Species List (pages 357-381).

* Reproduced on microfiche and enclosed in envelope attached to the inside of the back cover of this report.


## Phylogenetic Species List

Group/Species (MCR Code No.)	DMRP Code No.
Coelenterata (Cnidaria)   Hydrozoa   Hydrozoa spp. (367)	
Anthozoa	
Anthozoa sp. \#1 (377)	
Anthozoa sp. \#2 (378)	
Anthozoa sp. \#3 (379)	
Anthozoa sp. \#4 (428)	
Anthozoa sp. \#5 (429)	
Anthozoa sp. \#6 (430)	
Anthozoa spp. (328)	

```
Ophiuroidea (cont.)
```


## Ophiuridae

Ophiura lutkeni (86) 17610
Ophiura sarsii (91) 17614
Ophiura spp. (92) 17612
Gorgonocephalidae
Gorgonocephalus caryi (572) 17615
Ophiolepidinae
Ophiomusium jolliensis (573) 17616
Asteroidea
Luidiidae
Luidia foliolata (570) 40265
Asteriidae
Pisaster brevispinus (571) 40266
Nemertea
Nemertea sp. \#l (438) 40267
Nemertea sp. \#2 (466) 40268
Nemertea sp. \#3 (451) 40269
Nemertea sp. \#4 (456) 40270
Nemertea sp. \#5 (460) 40271
Nemertea sp. \#6 (463) 40272
Nemertea sp. \#7 (471) 40273
Nemertea sp. \#8 (472) 40274
Nemertea sp. \#9 (473) 40275
Nemertea sp. \#11 (475) 40277
Nemertea sp. \#12 (485) 40278
Nemertea sp. \#13 (510) 40279
Nemertea sp. \#14 (536) 40280
Nemertea spp. (361) 18700
Annelida
Polychaeta
Polychaeta spp. (369) 19001
Polynoidae
Polynoidae spp. (333) 19020
Antinoella macrolepida? (395) 40281
Harmothoe nr. Iunulata (465) 19027
Hesperonoe sp. \#1 (466) 40282
Lepidasthenia berkelayae (480) 40100
Lepidasthenia longicirrata (474) 40603
Eunoe sp. \#l (372) 40196
Gattyana coliata (545) 40283
Polynoe sp. \#1 (546) 40284
Lepidonotus sp. \#1 (268) 19034
Tenonia kitsapensis (476) 40102

Annelida (cont.)
Sigalionidae
Pholoe minuta (322) 19061
Sthenelais tertiaglabra (348) 19068
Thalenessa spinosa (354) 40118
Sigalionidae spp. (484) 19055
Paraonidae
Aricidea ramosa (226) 19113
Aricidea sp. \#I (227) 19114
Aedicira sp. \#l (392) 40285
Aricidea neosuecica (448) 40094
Aricidea spp. (355) 19111
Paraonella platybranchia (317) 40154
Paraonis gracilis oculatus (442) 40095
Paraonidae spp. (291) 19110
Hesionidae
Hesiospina sp. \#1 (265) 40286
Podarkeopsis brevipalpa (459) 40287
Hesionidae spp. (263) 19120
Hesionidae sp. \#1 (414) 40288
Hesionidae sp. \#2 (420) 40289
Cossuridae
Cossura nr. laeviseta (449) 40290
Cossura spp. (262) 19131
Phyllodicidae
Eteone californica (245) 19137
Anaitides mucosa (324) 40291
Anaitides groenlandica (323) 40292
Anaitides longipes (544) 40293
Eumida sanguinea (250) 19149
Eteone sp. \#l (393) 40294
Eteone sp. \#2 (224) 40295
Eteone (Mysta) barbata (231) 40296
Eteone longa (307) 19160
Eteone sp. \#5 (314) 40297
Eteone sp. \#6 (244) 40298
Eteone sp. \#7 (271) 40299
Eteone spp. (246) 19155
Eumida spp. (285) 40492
Anaitides sp. \#3 (383) 40300
Anaitides sp. \#4 (272) 40301
Anaitides $\operatorname{spp}$. (340) 19143
Phyllodocidae sp. \#l (248) 40302
Phyllodocidae sp. \#2 (257) 40303
Phyllodocidae spp. (325) 19136
Paranaitis polynoides (551) 19153
Eulalia leavicornuta (587) 40304

Syllidae

$$
\text { Autolytus cornutus (269) } 19212
$$

Autolytus spp. (388) 19202
Exogone lourei (478) 40110
Exogone spp. (432) 19217
Langerhansia heterochaeta (479) 40305
Typosyllis alternata (477) 40306
Typosyllis hyalina (254) 40307
Typosyllis nr. hyalina (255) 40491
Syllidae spp. (350) 19200
Nereidae
Nereis zonata (398) 19231
Nereis $\operatorname{spp}(308) 19232$
Nereidae spp. (306) 19220
Nephtyidae
Nephtys caeca (301) 19241
Nephtys caecoides (302) 19242
Nephtys californiensis (303) 19243
Nephtys ferruginea (390) 19244
Nephtys glabra (304) 19251
Nephtys cornuta (284) 40308
Nephtys cornuta franciscanum (464) 40309
Nephtys rickettsi (440) 40310
Nephtys spp. (373) 19247
Nephtyidae spp. (295) 19240
Glyceridae
Glycera capitata (252) 19262
Glycera convoluta (385) 40311
Glycera sp. \#1 (426) 40312
Glycera $\operatorname{spp}$. (253) 19265
Goniadidae
Goniada maculata (259) 19287
Glycinde picta (408) 40149
Glycinde sp. \#2 (256) 40313
Glycinde spp. (258) 19284
Goniadidae spp. (407) 19280
Onuphidae
Nothria iridescens (310) 19304
Nothria geophiliformis? (311) 40314
Nothria spp. (235) 19306
Lumbrineridae
Lumbrineris bicirrata (329) 19341
Lumbrineris zonata (436) 19345

Lumbrineris latreilli (273) 19349
Lumbrineris luti (275) 19350
Lumbrineris simalibris (276) 19351
Lumbrineris minima (454) 40315
Lumbrineris cf. longensis (274) 19359
Lumbrineris spp. (277) 19347
Ninoe gemmea (309) 19346
Arabellidae
Arabella spp. (283) 19382
Notocirrus californiensis (238) 40316
Arabellidae sp. \#l (455) 40317
Arabellidae sp. \#3 (433) 40318
Arabellidae sp. \#4 (270) 40319
Arabellidae spp. (387) 19380
Dorvilleidae
Schistomaringos annulata (458) 40320
Dorvilleidae spp. (287) 19400
Orbiniidae
Haploscoloplos elongatus (261) 19421
Scoloplos armiger (341) 19427
Scoloplos spp. (305) 19429
Phylo felix (326) 40321
Orbinia sp. \#l (467) 40092
Orbiniidae spp. (315) 19420
Spionidae
Polydora caulleryi (288) 19445
Polydora sp. \#2 (292) 40322
Polydora $\operatorname{spp}$. (332) 19451
Laonice cirrata (266) 19442
Spiophanes bombyx (344) 19453
Spiophanes berkeleyorum (345) 40155
Prionospio malmgreni (336) 19457
Prionospio spp. (338) 19459
Boccardia basilaria? (289) 40323
Munispio cirrifera (355) 40324
Paraprionospio pinnata (337) 19456
Scolelepsis cirratulus (384) 40325
Spio filicornis (343) 40037
Spionidae spp. (370) 19430
Magelonidae
Magelona longicornis (278) 19467
Magelona pitelkai (280) 40326
Magelona sacculata (279) 40150
Magelona spp. (281) 19463
Chaetopteridae
Mesochaetopterus sp. \#1 (399) ..... 40327
Spiochaetopterus costarum (352) ..... 40328
Chaetopteridae spp. (403) ..... 19480
Cirratulidae
Tharyx tesselata (356) ..... 19512
Tharyx multifilis (358) ..... 40329
Tharyx sp. \#l (357) ..... 40119
Tharyx sp. \#3 (433) ..... 40330
Tharyx spp. (359) ..... 19510
Chaetozone setosa (237) ..... 19515
Chaetozone nr . berkeleyorum (239) ..... 40331
Cirratulidae spp. (240) ..... 19500
Flabelligeridae
Brada pluribranchiata (470) ..... 40332
Pherusa papillata (468) ..... 40333
Flabelligeridae spp. (251) ..... 19520
Opheliidae
Armandia bioculata (288) ..... 19541
Travisia brevis (482) ..... 19546
Travisia gigas (360) ..... 19550
Ophelia sp. \#l (313) ..... 40151
Ophelina acuminata (220) ..... 40334
Ophelina sp. \#l (541) ..... 40335
Opheliidae spp. (342) ..... 19540
Maldanidae
Maldane sarsi (282) ..... 19562
Asychis disparidentata (406) ..... 40336
Asychis sp. \#2 (457) ..... 40337
Asychis spp. (462) ..... 19566
Isocirrus sp. \#l (453) ..... 40338
Praxillella affinis pacifica (445) ..... 40339
Prixillella gracilis (334) ..... 40340
Rhodine bitorguata (339) ..... 40341
Maldanidae sp. \#4 (286) ..... 40342
Maldanidae sp. \#14 (444) ..... 40343
Maldanidae sp. \#19 (299) ..... 40344
Maldanidae sp. \#20 (241) ..... 40345
Maldinidae sp. \#2l (241) ..... 40346
Maldinidae spp. (293) ..... 19560
Oweniidae
Myriochele heeri (437) ..... 19581
Myriochele oculata (300) ..... 40347
Myriochele spp. (483) ..... 19583
Owenia collaris (316) ..... 40157
Oweniidae spp. (397) ..... 19580

Polychaeta (cont.)
Sternaspidae
Sternaspis fossor (347) ..... 40116
Arenicolidae
Abarenicola sp. \#l (219) ..... 40348
Arenicolidae spp. (386) ..... 19620
Capitellidae
Capitella capitata (232) ..... 19641
Capitella capitata oculata (233) ..... 19649
Capitella spp. (540) ..... 19654
Mediomastus californiensis (294) ..... 19643
Notomastus hemipodus (312) ..... 19644
Notomastus lineatus (298) ..... 40349
Heteromastus filobranchus (264) ..... 19651
Heteromastus sp. \#l (296) ..... 40350
Heteromastus spp. (394) ..... 19653
Barantolla americana (236) ..... 40351
Decamastus gracilis (242) ..... 40352
Capitellidae spp. (368) ..... 19640
Capitellidae sp. \#l (346) ..... 40353
Pectinariidae
Pectinaria californiensis (320) ..... 19661
Pectinaria sp. \#l (418) ..... 19664
Pectinaria (Cistenides) granulata (319) ..... 40354
Pectinaria spp. (321) ..... 19663
Ampharetidae
Anobothrus gracilis? (389) ..... 19702
Melinna oculata (297) ..... 19708
Mellina spp. (396) ..... 19706
Ampharete acutifrons (221) ..... 19710
Ampharete arctica (439) ..... 19713
Ampharete spp. (233) ..... 19709
Ampharete sp. \#l (452) ..... 40123
Ampharetidae spp. (290) ..... 19700
Terebellidae
Artacama coniferi (260) ..... 19722
Polycirrus spp. (331) ..... 19729
Terebellides stroemi (447) ..... 19731
Pista cristata (328) ..... 19735
Pista moorei (330) ..... 19736
Pista spp. (441) ..... 19734
Artacamella hancocki (229) ..... 40355
Neoamphitrite robusta (267) ..... 40356
Thelepus setosus (318) ..... 40357
Lanassa sp. \#1 (349) ..... 40358
Terebellidae spp. (353) ..... 19720

```
Polychaeta (cont.)
```


## Sabellidae

Chone albocincta (481) ..... 40103
Sabellidae spp. (405) ..... 19740
Pilargidae
Sigambra tentaculata (450) ..... 19867
Parandalia fauveli (435) ..... 40359
Pilargis berkeleyae (434) ..... 40360
Pilargidae spp. (327) ..... 19860
Apistobranchidae
Apistobranchus ornatus (225) ..... 40362
Disomidae
Trochochaeta franciscanum (243) ..... 40364
Scalibregmidae
Scalibregma inflatum (409) ..... 19803
Sphaerodoridae
Sphaeordoropsis sphaerulifer (469) ..... 40104
Sphaerodoridae spp. (461) ..... 40105
Oligochaeta
Oligochaeta spp. (422) ..... 19900
Hirudinea
Hirudinea spp. (543) ..... 20271
Mollusca
Gastropoda
Gastropoda spp. (34) ..... 21100
Gastropoda sp. \#l (578) ..... 40365ArchaeogastropodaAcmaeidae
Collisella digitalis? (521) ..... 40366
Opisthobranchiata
Aglajidae
nglaja diomedea (30) ..... 40146
Gastropteridae
Gastropteron pacificum (509) ..... 40369
Scaphandridae
Cylichna attonsa (1) ..... 21233
Acteocina? sp. \#l (518) ..... 40370
Pyramidellidae
Turbonilla aurantia (10) ..... 21267
Turbonilla sp. \#l (11) ..... 21268
Turbonilla sp. \#2 (12) ..... 21269
Odostomia sp. \#l (6) ..... 21270
Odostomia spp. (539) ..... 21265

Mollusca-Opisthobranchiata (cont.)
Opistobranchia sp. \#l (234) ..... 40371
Opistobranchia sp. \#2 (249) ..... 40372
Nudibranchiata
Doridacea sp. \#l (18) ..... 40373Arminidae
Armina californca (416) ..... 40375
Prosobranchia
EpitoniidaeEpitonium tinctum (16) 40376NaticidaePolinices pallidus (17) 21545
Muricidae
Trachypollia? sp. \#l (538) ..... 40377
Columbellidae
Mitrella gouldii (2) ..... 21596
Neptuneidae
Neptuneidae sp. \#l (14) ..... 40379
Nassariidae
Nassarius fossatus (3) ..... 21626
Nassarius mendicus (4) ..... 21627
Nassarius spp. (5) ..... 21625
Olividae
Olivella baetica (7) ..... 21655
Olivella biplicata (8) ..... 21656
Olivella pycna (9) ..... 21657
Olivella spp. (514) ..... 21654
Turridae
Oenopota turricula? (13) ..... 40380
Ophiodermella cancellata (15) ..... 40381
Ophiodermella sp. \#l (351) ..... 40382
Pelecypoda
Pectinidae
Pectinidae sp. \#l (577) ..... 40383
Propeamussium davidsoni (579) ..... 40395
Nuculidae
Acila castrensis (19) ..... 21931
Nucula tenuis (20) ..... 21933
Nuculanidae
Yoldia seminuda (21) ..... 21968
Yoldia spp. (22) ..... 21966
Nuculana hamata (23) ..... 40384
Nuculanidae spp. (477) ..... 21960

Nucinellidae
Huxleyia munita (59) 21991
Mytilidae
Musculus sp. \#I (43) 22039
Musculus sp. \#2 (75) 40385
Musculus laevigata (28) 22040
Crenella decussata (44) 22041
Carditidae
Cyclocardia ventricosa (54) 40086
Thyasiridae
Axinopsida serricata (24) 22203
Thyasira flexuosa (25) 22205
Adontorhina cyclia (26) 40038
Veneridae
Compsomyax subdiaphana (56) 40041
Psephidia lordi (58) 40088
Transennella tantilla? (46) 40084
Tellinidae
Macoma moesta alaskana (29) 22302
Macoma calcera (124) 22322
Macoma carlottensis (32) 22304
Macoma elimata? (33) 40386
Macoma nasuta (31) 22323
Macoma balthica? (391) 22324
Macoma sp. \#2 (164) 22306
Macoma spp. (431) 22326
Tellina modesta (36) 22307
Tellina carpenteri (37) 22346
Tellina sp. \#5 (525) 40387
Tellina spp. (38) 22329
Tellinidae sp. \#l (35) 40388
Tellinidae sp. \#3 (48) 40389
Solenidae
Siliqua patula (27) 22351
Lyonsiidae
Lyonsia californica (39) 40390
Lyonsia inflata? (40) 40391
Lyonsia sp. \#2 (41) 22506
Thracia sp. \#l (65) 40392
Lucinidae
Lucinoma annulata (55) 40087
Montacutidae
Mysella tumida (57) 22574
Orobitella rugifera (47) 40395
Tomburchus sp. \#l (531) 40394

```
Mollusca (cont.)
```

Pandoridae
Pandora filosa (50) 22603
Pandora grandis (51) 22604
Pandora bilirata? (53) 22605
Pandora punctata (52) 22609
Cuspidariidae
Cardiomya oldroydi (42) 22621
Pelecypoda sp. \#l (60) 40396
Pelecypoda sp. \#2 (61) 40397
Pelecypoda sp. \#3 (62) 40398
Pelecypoda sp. \#4 (415) 40399
Pelecypoda sp. \#7 (63) 40400
Pelecypoda sp. \#9 (526) 40401
Pelecypoda sp. \#l0 (374) 40402
Pelecypoda sp. \#ll (64) 40403
Pelecypoda sp. \#15 (66) 40404
Pelecypoda sp. \#20 (519) 40405
Pelecypoda spp. (45) 21900
Aplacophora (=Amphineura)
Neomeniida sp. \#l (534) 40406
Chaetodermatidae sp. \#1 (49) 40407
Chaetodermatidae spp. (530) 40408
Scaphopoda
Dentaliidae
Dentalium rectius (68) 22732
Denteliidae spp. (67) 22726
Cephalopoda
Sepiolidae
Rossia pacifica (576) 22811
Octopodidae
Octopus sp. \#1 (575) 40409

Arthropoda
Crustacea
Ostracoda
Cylindroleberididae
Bathyleberis sp. \#1 (194) 40411
Cyprininidae
Euphilomedes carcharodonta (193) 23299
Euphilomedes producta (574) 40412
Sclerodoncha trituberculata (195) 23301
Rutidermatidae
Rutiderma sp. \#l (424) 40414

Arthropoda (cont.)
Cirripedia
Balanus hesperius (201) 23720
Pycnogonida
Pycnogonida sp. \#1 (381) 40415
Nebaliacea
Nebalia bipes (76) 40090
Mysidacea
Mysidae
Archeomysis grebnitzkii (100) 23855
Acanthomysis macropsis (113) 23856
Acanthomysis davisi (114) 23879
Acanthomysis nephrothalma (115) 23880
Acanthomysis alaskensis (527) 40416
Acanthomysis spp. (119) 23874
Neomysis kadiakensis (112) 23865
Neomysis franciscorum (111) 23885
Neomysis sp. \#1 (116) 23877
Neomysis spp. (118) 23875
Mysini spp. (117) 23881
Mysidacea spp. (120) 23840
Cumacea
Diastylidae
Diastylopsis dawsoni (97) 23899
Diastylopsis tenuis (98) 23900
Diastylis umatillensis (99) 23901
Diastylis bidentata (100) 23902
Diastylis alaskensis (101) 23903
Diastylis pellucida (586) 40417
Diastylis parapinulosa (584) 40418
Diastylis sp. \#l (l02) 23904
Colurostylis occidentalis (104) 23906
Lampropidae
Mesolamprops sp. \#l (95) 23897
Hemilamprops californiensis (96) 23898
Lamprops sp. \#l (94) 23916
Lamprops sp. \#2 (105) 40420
Campylaspis rubromaculata (400) 23907
Campylaspis sp. \#l (106) 23908
Campylaspis sp. \#2 (107) 23909
Campylaspis sp. \#3 (108) 23910
Campylaspis sp. \#4 (582) 40422
Leuconidae
Leucon sp. \#1 (528) 40424
Eudorellopsis longirostris (103) 23905
Eudorella pacifica (109) 23914
Cumacea spp. (223) 23889

## Cumacea (cont.)

Tanaidacea
Leptognatha cf. longiremis (77) 40042
Isopoda
Sphaeromatidae
Gnorisphaeroma oregonensis (502) 23921
Tecticeps convexus (198) 23933
Bathycopea daltonae (197) 40427
Idoteidae
Synidotea angulata (196) 23925
Synidotea bicuspida (380) 40429
Synidotea sp. \#2 (496) 40430
Synidotea sp. \#3 (497) 40431
Edotea sublittoralis (500) 40432
Idotea fewksei (5ll) 40433
Pentidotea oculata (501) 40434
Saduria etomon (508) 40435
Munnidae
Pleurogonium rubicundum? (199) 40437
Limnoridae
Limnoria lognorum? (503) 23924
Bopyridae
Argeia pugettensis (200) 23929
Argeia spp. (505) 40440
Bopyrella? sp. \#l (404) 23960
Hemiarthrus abdominalis (506) 40441
Anthuridae
Pananthura? sp. \#l (504) 40443
Paraselloidea sp. \#1 (499) 40444
Cymothoidae
Cymothoidae sp. \#l (507) 40446
Amphipoda
Ampeliscidae
Ampelisca agassizi (123) 24004
Ampelisca hancocki (122) 24005
Ampelisca macrocephala (121) 24006
Ampelisca brevisimulata (125) 40447
Byblis veleronis (126) 40044
Byblis sp. \#l (410) 40448
Aoridae (=Corophiidae)
Aoroides columbiae? (167) 24029
Aoridae sp. \#l (168) 40449
Corophiidae
Corophium brevis (492) 24047
Corophium salmonis (230) 24051
Corophium spinicorne (495) 24053
Corophium sp. \#1 (188) 24056
Corophium sp. \#2 (535) 40450
Gammaridae
Anisogammarus confervicolus (488) ..... 24067
Anisogammarus pugettensis (489) ..... 24069
Melita desdichada? (179) ..... 24084
Melita oregonensis (180) ..... 24086
Haustoriidae
Eohaustorius sencillus (155) ..... 24096
Eohaustorius washingtonianus (156) ..... 24097
Eohaustorius brevicuspis (494) ..... 40451
Ischyroceridae
Ischyrocerus pelagops (162) ..... 24108
Jassa? sp. \#l (493) ..... 40452
Liljeborgiidae
Listriella spp. (183) ..... 24119
Lysianassidae
Hippomedon denticulatus (169) ..... 24123
Hippomedon wecomus (170) ..... 24124
Hippomedon sp. \#l (178) ..... 40453
Opisa tridentata (173) ..... 24126
Orchomene pacifica (172) ..... 40454
Orchomene sp. \#2 (486) ..... 40455
Pachynus barnardi? (174) ..... 24129
Pachynus chelatum? (171) ..... 40456
Nicippe tumida (175) ..... 40457
Anonyx adoxus (176) ..... 40045
Lysianassidae sp. \#l (177) ..... 40458
Lysianassidae sp. \#2 (585) ..... 40459
Lysianassidae spp. (371) ..... 24122
Oedicerotidae
Bathymedon? sp. \#l (131) ..... 24134
Bathymedon? sp. \#2 (411) ..... 40460
Monoculodes spinipes (127) ..... 24136
Monoculodes sp. \#1 (128) ..... 24137
Monoculodes sp. \#2 (129) ..... 24138
Monoculodes zernovi (130) ..... 24141
Synchelidium shoemakeri (132) ..... 24139
Synchelidium rectipalmum (133) ..... 24142
Westwoodilla caecula (134) ..... 24140
Phoxocephalidae
Paraphoxus abronius? (135) ..... 24146
Paraphoxus epistomus? (137) ..... 24148
paraphoxus heterocuspidatus (138) ..... 24149
Paraphoxus lucubrans? (146) ..... 24150
Paraphoxus milleri (145) ..... 24151
Paraphoxus obtusidens obstusidens? (139) ..... 24152
Pharaphoxus obtusidens major (140) ..... 24153
Isaeidae (Corophiidae) sp. \#l (527) ..... 40470
Pardaliscidae
Pardaliscella sp. \#l (186) ..... 40472
Eusiridae
Rhachotropis oculata (402) ..... 40474
Accedomoera sp. \#l (187) ..... 40475
Gammaridea sp. \#2 (366) ..... 40476Caprelloidea
Aeginneliidae
Mayerella banskia? (190) ..... 40479
Tritella pilimana (191) ..... 24342
Caprellidae
Caprella sp. \#l (532) ..... 40481
Caprella mendax (581) ..... 40482
Hyperiidea
Hyperiidea sp. \#l (529) ..... 24206
Euphausiacea
Euphausiidae
Euphausia pacifica (569) ..... 24360
Thysanoessa spinifera (568) ..... 24374
Decapoda
Pandalidae
Pandalus danae (557) ..... 24417
Pandalus jordani (558) ..... 24420
Hippolytidae
Spirontocaris gracilis (206) ..... 24432
Spirontocaris avina (561) ..... 24433
Spirontocaris barbata (562) ..... 40046
Spirontocaris bispinosa (563) ..... 24434
Spirontocaris cristata (564) ..... 24430
Spirontocaris lamellicornis (565) ..... 40047
Spirontocaris pusiola? (566) ..... 40048
Spirontocaris suckleyi (567) ..... 40050
Spirontocaris spp. (583) ..... 40049
Crangonidae
Crangon alaskensis elongata (203) ..... 24436
Crangon franciscorum (520) ..... 24439
Crangon stylirostris (204) ..... 24448
Crangon spp. (205) ..... 24446
Crangon communis (550) ..... 24450
Crangon munita (552) ..... 24440
Crangon sp. \#l (553) ..... 24452
Nectocrangon alakensis (544) ..... 24451
Sergestidae
Sergestes similis (560) ..... 24462
Callianassidae
Callianassa californiensis (547) ..... 24614
Decapoda (cont.)
Galatheidae
Munida quadrispina (218) ..... 24646
Paguridae
Pagurus armatus (212) ..... 24657
Pagurus ochotensis (210) ..... 24671
Pagurus quayleyi (211) ..... 24672
Pagurus aleuticus (556) ..... 40483
Paguristes turgidis (555) ..... 24654
Pagurus caurinus (513) ..... 40484
Pagurus spp . (213) ..... 24678
Paguridae spp. (214) ..... 24650
Majidae
Chorilia longipes (549) ..... 24909
Cancridae
Cancer gracilis? (216) ..... 24929
Cancer magister (217) ..... 24930
Cancer oregonensis (548) ..... 24931
Pinnotheridae
Pinnixa occidentalis (559) ..... 24967
Pinnixa sp. \#1 (207) ..... 24961
Pinnixa sp. \#2 (208) ..... 24962
Pinnixa sp. \#3 (209) ..... 24963
Pinnixa littoralis (542) ..... 24966
Pinnixa spp. (215) ..... 24970
Sipunculida
Golfingia macginitiei (69) ..... 25352
Golfingia sp. \#l (70) ..... 25353
Sipunculida spp. (71) ..... 25350
Echiurida
Echiurus echiurus alaskansus (73) ..... 25402
Archynchite pugettensis (74) ..... 25403
Echiura sp. \#3 (421) ..... 40485
Echiura sp. \#4 (427) ..... 40486
Echiura sp. \#5 (533) ..... 40487
Echiurida spp. (423) ..... 25400
Priapulida
Priapulus caudata (72) ..... 25454
Proronida
Phoronis psammophila? (419) ..... 40488
Miscellaneous
Miscellaneous \#l (362)
Miscellaneous \#2 (363)
Miscellaneous \#3 (364)
Miscellaneous \#4 (375)
Miscellaneous \#5 (376)
Miscellaneous \#6 (580)

Community Structure

Table C-IIIA. Species Richness (SR), Simpson Diversity (SD), Shannon Diversity [H(2), H(E), H(10)], and Evenness [JPR(2), J(2)] Values for Each Macrofauna Station (pages 383-399).

Table C-IIIB. Density, Number of Species and Biomass for Each Macrofauna Station (pages 400-411).
Table C-IIIA
HPR(10)], $J(2)]$ values for each

Station	SR	SD	$\mathrm{HPR}(2)$	$\mathrm{HPR}(\mathrm{E})$	$\mathrm{HPR}(10)$	$\mathrm{H}(2)$	$\mathrm{H}(\mathrm{E})$	$\mathrm{H}(10)$	$\mathrm{JPR}(2)$	$\mathrm{J}(2)$
47	13.643	0.950	5.134	3.558	1.545	4.946	3.429	1.489	0.776	0.748
48	12.008	0.920	4.727	3.276	1.423	4.524	3.136	1.362	0.741	0.710
49	8.056	0.910	4.277	2.964	1.287	4.030	2.794	1.213	0.758	0.714
50	8.336	0.935	4.628	3.208	1.393	4.184	2.900	1.259	0.843	0.762
51	6.348	0.913	4.155	2.880	1.251	3.849	2.668	1.159	0.804	0.745
52	8.561	0.943	4.682	3.245	1.409	4.344	3.011	1.308	0.830	0.770
53	7.572	0.536	2.339	1.621	0.704	2.252	1.561	0.678	0.403	0.338
54	15.832	0.887	4.544	3.150	1.368	4.425	3.067	1.332	0.652	0.635
55	14.807	0.924	4.632	3.210	1.394	4.519	3.133	1.360	0.674	0.658
56	10.025	0.811	3.565	2.471	1.073	3.483	2.414	1.049	0.566	0.553
57	7.451	0.935	4.505	3.123	1.356	4.234	2.935	1.275	0.820	0.771
58	5.963	0.907	4.037	2.798	1.215	3.685	2.555	1.109	0.807	0.737
59	3.794	0.862	3.363	2.331	1.012	3.039	2.107	0.915	0.792	0.715
60	5.887	0.879	3.768	2.612	1.134	3.510	2.433	1.057	0.741	0.690


Station	SR	SD	HPR (2)	Table C-IIIA (Continued)			H(E)	H(10)	JPR (2)	$J$ (2)
				HPR (E)	HPR (10)	H(2)				
61	4.554	0.888	3.721	2.579	1.120	3.514	2.436	1.058	0.783	0.739
62	3.779	0.643	2.576	1.786	0.775	2.393	1.659	0.720	0.578	0.537
63	4.118	0.798	2.945	2.041	0.886	2.694	1.867	0.811	0.660	0.604
64	6.436	0.886	3.917	2.715	1.179	3.606	2.499	1.085	0.758	0.697
65	8.616	0.807	3.326	2.305	1.001	3.288	2.279	0.990	0.534	0.528
66	10.114	0.845	3.637	2.521	1.095	3.571	2.475	1.075	0.572	0.562
67	13.041	0.910	4.506	3.123	1.356	4.407	3.055	1.327	0.673	0.658
68	14.652	0.928	4.717	3.270	1.420	4.576	3.172	1.378	0.694	0.673
69	10.548	0.848	3.683	2.553	1.109	3.608	2.501	1.086	0.576	0.564
70	8.717	0.795	3.344	2.318	1.007	3.272	2.268	0.985	0.547	0.536
71	5.246	0.767	3.277	2.272	0.987	2.837	1.966	0.854	0.706	0.611
72	6.466	0.857	3.885	2.693	1.169	3.452	2.393	1.039	0.770	0.684
73	6.411	0.887	4.110	2.849	1.237	3.786	2.624	1.140	0.795	0.723
74	5.162	0.827	3.442	2.386	1.036	3.109	2.155	0.936	0.724	0.654
75	5.924	0.888	3.846	2.666	1.158	3.693	2.560	1.112	0.728	0.699
76	5.599	0.852	3.410	2.363	1.026	3.219	2.231	0.969	0.670	0.633




Station	Table C-IIIA (Continued)									
	SR	SD	HPR (2)	HPR(E)	HPR (10)	H (2)	H(E)	H(10)	JPR (2)	J (2)
112	3.704	0.454	1.855	1.286	0.558	1.708	1.184	0.514	0.416	0.383
113	2.857	0.830	2.938	2.037	0.885	2.506	1.737	0.754	0.820	0.699
114	4.047	0.886	3.595	2.492	1.082	3.285	2.277	0.989	0.818	0.748
115	3.660	0.877	3.452	2.393	1.039	3.108	2.154	0.936	0.828	0.745
116	4.410	0.691	2.789	1.933	0.839	2.461	1.706	0.741	0.625	0.522
117	6.620	0.872	3.989	2.765	1.201	3.595	2.492	1.082	0.778	0.701
118	5.870	0.885	3.891	2.697	1.171	3.597	2.493	1.083	0.771	0.713
119	4.250	0.817	3.173	2.199	0.955	2.876	1.993	0.866	0.711	0.645
120	8.019	0.918	4.296	2.978	1.293	4.017	2.784	1.209	0.769	0.719
121	3.272	0.852	3.232	2.240	0.973	2.906	2.014	0.875	0.808	0.726
122	6.034	0.832	3.488	2.418	1.050	3.240	2.246	0.975	0.680	0.632
123	5.471	0.808	3.334	2.311	1.004	3.010	2.087	0.905	0.686	0.620
124	3.894	0.744	2.702	1.873	0.813	2.471	1.713	0.744	0.615	0.563
125	2.771	0.847	3.026	2.098	0.911	2.767	1.918	0.833	0.795	0.727
126	8.351	0.916	4.327	2.999	1.302	4.149	2.876	1.249	0.745	0.714
127	6.490	0.686	2.977	2.064	0.896	2.798	1.939	0.842	0.556	0.522


Table C-IIIA (Continued)										
Station	SR	SD	HPR (2)	HPR (E)	HPR (10)	H(2)	H (E)	H(10)	JPR (2)	$J(2)$
128	6.670	0.880	3.983	2.761	1.199	3.615	2.506	1.088	0.770	0.699
129	4.542	0.793	3.245	2.249	0.977	2.903	2.012	0.874	0.717	0.642
130	4.250	0.806	3.180	2.204	0.957	2.880	1.997	0.867	0.713	0.646
131	3.728	0.812	3.156	2.188	0.950	2.857	1.980	0.860	0.743	0.673
132	4.141	0.759	2.914	2.020	0.877	2.692	1.866	0.816	0.644	0.595
133	3.990	0.605	2.272	1.575	0.684	2.096	1.453	0.631	0.502	0.463
134	4.780	0.729	3.062	2.122	0.922	2.708	1.877	0.815	0.668	0.591
135	6.879	0.891	4.198	2.910	1. 264	3.766	2.611	1.134	0.812	0.728
136	5.073	0.460	1.886	1.307	0.568	1.824	1.264	0.549	0.359	0.348
137	5.887	0.421	1.773	1.229	0.534	1.739	1.206	0.524	0.316	0.310
141	4.555	0.269	1.218	0.844	0.367	1.172	0.812	0.353	0.237	0.228
142	7.351	0.922	4.333	3.004	1.304	4.159	2.883	1.252	0.772	0.741
143	10.750	0.838	3.717	2.577	1.119	3.636	2.520	1.095	0.580	0.567
144	16.943	0.953	5.240	3.632	1.577	5.094	3.531	1.533	0.745	0.724
145	7.105	0.885	4.104	2.845	1.236	3.915	2.713	1.178	0.743	0.709
146	7.423	0.926	4.344	3.011	1.308	4.180	2.897	1.258	0.770	0.741


Station	SR	SD	HPR (2)	Table C-IIIA (Continued)				H(10)	JPR (2)	J (2)
				HPR (E)	HPR (10)	H(2)	H(E)			
147	12.340	0.802	3.536	2.451	1.065	3.488	2.418	1.050	0.524	0.516
148	14.421	0.937	4.913	3.405	1.479	4.788	3.319	1.441	0.722	0.703
149	15.046	0.947	5.135	3.560	1.546	4.951	3.432	1.491	0.757	0.730
150	12.391	0.790	3.454	2.394	1.040	3.380	2.343	1.017	0.519	0.508
151	7.044	0.926	4.372	3.030	1.316	4.184	2.900	1.259	0.791	0.757
152	4.548	0.680	2.745	1.903	0.826	2.607	1.807	0.785	0.565	0.537
158	4.391	0.892	3.739	2.592	1.126	3.417	2.369	1.029	0.827	0.755
160	8.903	0.611	2.817	1.953	0.848	2.700	1.871	0.813	0.470	0.450
161	9.492	0.951	4.928	3.416	1.483	4.593	3.184	1.383	0.845	0.787
162	6.882	0.909	4.186	2.901	1.260	3.867	2.680	1.164	0.792	0.732
163	4.412	0.888	3.728	2.584	1.122	3.517	2.438	1.059	0.793	0.748
164	5.040	0.919	4.062	2.816	1.223	3.634	2.519	1.094	0.875	0.783
165	6.203	0.930	4.335	3.005	1.305	3.943	2.733	1.187	0.859	0.782
166	5.792	0.929	4.243	2.941	1.277	3.917	2.715	1.179	0.849	0.783
167	6.339	0.934	4.343	3.010	1.307	3.782	2.622	1.139	0.885	0.771
168	7.781	0.906	4.328	3.000	1.303	4.116	2.853	1.239	0.767	0.729


$\mathrm{H}(10) \quad \mathrm{JPR}(2) \quad J(2)$
0.543
0.484
0.737
0.653
$\begin{array}{ccc}\underset{\sim}{\infty} & \stackrel{\sim}{\sim} & \stackrel{-1}{m} \\ \stackrel{\sim}{m} \\ \dot{0} & \dot{0} & \dot{0}\end{array}$

$\begin{array}{ll}\circ & m \\ \forall & 0 \\ \vdots & 0 \\ 0 & 0\end{array}$
$\not+$
$\infty$
0
0

0
0
0

$\begin{array}{ll}\circ & \infty \\ \stackrel{0}{0} & \underset{7}{7} \\ \dot{0} & \stackrel{0}{0}\end{array}$

 $\begin{array}{cc}\circ \\ \underset{\sim}{m} & 0 \\ - & 0 \\ - & 0\end{array}$ $N$
$N$
0
0




VIII－D aTqe山

$\infty$	$\infty$
$\stackrel{\infty}{n}$	0
$\stackrel{\infty}{N}$	$\dot{m}$

$$
6.342
$$

$$
8.837
$$

$$
4.120
$$

$$
2.724
$$

0.461 004

$\stackrel{\circ}{n}$
$\stackrel{N}{N}$国
－ $\infty$
$\infty$
$\sim$
0

$$
\begin{aligned}
& \stackrel{m}{\sigma} \\
& \underset{-}{\prime}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { H } & \text { H゙ } \\
\text { in }
\end{array}
$$

$$
\begin{aligned}
& \text { g } \\
& \stackrel{y}{r} \\
& \text { i }
\end{aligned}
$$ Station

$$
10.294
$$

$$
2.421
$$

$$
10.445
$$

 0.820 1.162 1.543

$$
\begin{array}{r}
11.000 \\
6.965
\end{array}
$$

$$
\begin{aligned}
& 7.039 \\
& 3.464
\end{aligned}
$$

$$
2.054
$$

$$
\begin{array}{r}
2.753 \\
4.120
\end{array}
$$

$$
4.034
$$

$$
4.726
$$

$$
3.563
$$

$$
3.428
$$

$$
2.501
$$ 1.753

1.146 （Continued） 2.890 3.828 4.494
 3.331
2.332 1.630
2.199
1.653
3.755

0.923
0.829
1.240 1.240
1.214
1.423
1.073 0.600 1.032
0.753 0.524
0.705 0.531


$$
\begin{array}{lll}
-1 & N & m \\
\infty & N & \stackrel{\circ}{0} \\
\dot{m} & \underset{\sim}{n} & \dot{\sim}
\end{array}
$$

$$
\begin{array}{cc}
\stackrel{N}{N} & \stackrel{N}{-} \\
\underset{\sim}{N} & \stackrel{+}{N}
\end{array}
$$

$$
\begin{array}{cc}
\underset{\sim}{\circ} & \infty \\
\underset{\sim}{\infty} & \infty \\
\text { in } & \dot{0}
\end{array}
$$



$$
\begin{array}{lllll}
\underset{\sim}{\sim} & \stackrel{N}{\mathrm{~N}} & \stackrel{0}{\mathrm{~N}} & \stackrel{\sim}{\mathrm{~N}} & \underset{\sim}{\mathrm{~N}}
\end{array}
$$

$\mathrm{J}(2)$
0.278
0.311
0.293
0.562
0.340
0.266
0.453
0.277
0.279
0.323
0.661
0.514
0.717
0.466
0.381
0.670 JPR (2) 0.291
0.325
0.305
0.591
0.355
0.279
0.478
 0.704
0.504
0.769 0.490

 $\begin{array}{ll}\text { 안 } & -1 \\ \stackrel{n}{n} \\ \dot{0} & \dot{0}\end{array}$ 0.444
0.456
0.545
1.060
0.868
1.140
0.783
0.654

O
-
-1

1.123 1.100

 1.021
1.050
 1.256
2.440
 2.488

1.460
2.428 1.473
1.514 1.811
 $\begin{array}{cc}\stackrel{\circ}{\infty} & 8 \\ \sim \\ \dot{m} & \dot{\sim}\end{array}$
 0.476
0.509
0.498
0.960
0.603
0.461
0.770 0.464
0.472 0.472
0.567 0.567
 $\underset{\underset{N}{N}}{\substack{\text { N } \\ \sim}}$ 0.824
0.678
1.157 1.096
1.172 1.146 2.210 1.388 1.062 1.773 1.069

2.819
1.898
1.561
2.655
1.692
1.653
3.188
2.002 1.532
2.559 1.543
1.567
1.883
3.749
3.030
4.067
2.738 $\stackrel{N}{N}$
$\stackrel{N}{N}$
$\stackrel{N}{N}$ $Z_{1}$
$\dot{\infty}$
$\dot{m}$
$\qquad$ $n$ Hin $n=n$ $\qquad$ 4
0
7
4 $\qquad$
.
 0. $\begin{array}{lll}\stackrel{n}{n} & \stackrel{M}{\digamma} & \ddot{\nabla} \\ \dot{0} & \dot{0} & \dot{0}\end{array}$ 0.322
0.584

0.340 | $\underset{\sim}{N}$ | $\underset{\sim}{N}$ |
| :--- | :--- |
|  | 0 | $\begin{array}{ll}n & \text { n } \\ \text { N } \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$

 $\begin{array}{ll}\text { N } & \text { n } \\ \text { in } & \infty \\ 0 & 0 \\ 0 & 0 \\ & \\ \text { N } & \infty \\ \text { Ñ } & 0 \\ \dot{0} & 0 \\ 0 & 0\end{array}$

Station	SR	SD	HPR (2)	HPR (E)	HPR (10)	H(2)	H(E)	H(10)	JPR(2)	J (2)
278	3.747	0.691	2.448	1.697	0.737	2.371	1.644	0.714	0.521	0.504
279	3.128	0.479	1.593	1.104	0.479	1.547	1.072	0.466	0.352	0.342
280	4.426	0.719	2.443	1.693	0.735	2.397	1.661	0.722	0.480	0.471
281	4.153	0.631	2.173	1.506	0.654	2.099	1.455	0.632	0.447	0.432
282	4.672	0.506	2.110	1.462	0.653	2.049	1.420	0.617	0.411	0.399
283	3.901	0.908	3.611	2.503	1.087	2.843	1.971	0.856	0.948	0.747
284	12.178	0.840	3.877	2.687	1.167	3.769	2.613	1.135	0.591	0.575
285	10.401	0.597	2.816	1.952	0.848	2.739	1.899	0.825	0.442	0.430
286	7.902	0.446	1.995	1.383	0.600	1.937	1.343	0.583	0.334	0.324
287	5.459	0.609	2.222	1.540	0.669	2.175	1.508	0.655	0.410	0.401
288	6.134	0.206	0.946	0.656	0.285	0.929	0.644	0.280	0.163	0.160
293	4.147	0.656	2.390	1.657	0.720	2.265	1.570	0.682	0.509	0.482
297	5.439	0.581	2.517	1.745	0.758	2.387	1.655	0.719	0.487	0.462
298	4.632	0.364	1.599	1.108	0.481	1.527	1.058	0.460	0.298	0.285
299	4.689	0.863	3.544	2.456	1.067	3.201	2.219	0.964	0.773	0.698
300	4.700	0.362	1.587	1.100	0.478	1.518	1.052	0.457	0.312	0.298


Station	SR	SD	Table C-IIIA (Continued)					H (10)	JPR (2)	J (2)
			HPR (2)	HPR (E)	HPR (10)	H (2)	H (E)			
302	4.661	0.292	1.313	0.910	0.395	1.266	0.877	0.381	0.254	0.245
303	5.621	0.279	1.292	0.896	0.389	1.245	0.863	0.375	0.237	0.228
308	5.208	0.618	2.591	1.796	0.780	2.441	1.692	0.735	0.514	0.484
310	4.271	0.462	1.890	1.310	0.569	1.800	1. 248	0.542	0.389	0.370
312	4.379	0.882	3.578	2.480	1.077	3.228	2.237	0.972	0.802	0.724
313	3.990	0.808	3.078	2.133	0.926	2.849	1.975	0.858	0.690	0.639
315	5.232	0.801	3.189	2.211	0.960	2.928	2.030	0.882	0.657	0.603
316	4.913	0.514	2.049	1.420	0.617	1.947	1.349	0.586	0.406	0.386
319	4.597	0.820	3.168	2.196	0.954	2.910	2.017	0.876	0.682	0.627
324	7.091	0.541	2.412	1.672	0.726	2.315	1.605	0.697	0.425	0.408
325	9.660	0.694	3.091	2.143	0.931	2.971	2.059	0.894	0.504	0.485
330	3.643	0.803	2.966	2.056	0.893	2.707	1.876	0.815	0.698	0.637
332	4.846	0.782	3.073	2.130	0.925	2.859	1.982	0.861	0.639	0.595
335	3.822	0.826	3.155	2.187	0.950	2.834	1.965	0.853	0.743	0.667
336	4.289	0.862	- 3.464	2.401	1.043	3.182	2.206	0.958	0.766	0.704
343	5.200	0.882	3.735	2.589	1.124	3.289	2.279	0.990	0.804	0.708



Station	Table C-IIIA (Continued)									
	SR	SD	HPR (2)	HPR (E)	HPR (10)	H(2)	H (E)	H(10)	JPR (2)	J (2)
362	4.591	0.697	2.618	1.815	0.788	2.459	1. 704	0.740	0.545	0.512
364	7.367	0.884	3.804	2.637	1.145	3.684	2.554	1.109	0.667	0.646
365	5.719	0.851	3.759	2.606	1.132	3.573	2.477	1.076	0.727	0.691
366	5.116	0.858	3.677	2.548	1.107	3.251	2.253	0.979	0.792	0.700
367	5.414	0.920	4.070	2.821	1.225	3.473	2.407	1.046	0.888	0.758
368	5.757	0.922	4.140	2.870	1.246	3.754	2.602	1.130	0.844	0.765
369	5.278	0.886	3.874	2.685	1.166	3.439	2.384	1.035	0.824	0.732
370	5.223	0.873	3.709	2.571	1.116	3.254	2.255	0.979	0.799	0.701
371	5.381	0.915	4.078	2.826	1.227	3.698	2.563	1.113	0.848	0.769
372	5.472	0.921	4.149	2.876	1.249	3.740	2.592	1.126	0.863	0.778
373	6.123	0.887	3.901	2.704	1.174	3.435	2.381	1.034	0.795	0.700
374	7.145	0.609	2.730	1.893	0.822	2.601	1.803	0.783	0.486	0.453
375	6.330	0.491	2.211	1.533	0.666	2.114	1.465	0.636	0.403	0.385
376	6.701	0.675	3.056	2.118	0.920	2.860	1.982	0.861	0.567	0.530
377	6.417	0.846	3.844	2.664	1.157	3.613	2.504	1.088	0.727	0.684
378	4.965	0.922	4.017	2.784	1.209	3.509	2.432	1.056	0.888	0.776



Density, number of species, and Biomass $/ \mathrm{m}^{2}$

## for each macrofauna station.

Station	Indiv. $/ \mathrm{m}^{2}$	Species	Biomass/m ${ }^{2}$
47	3076	98	5.7758
48	1848	83	5.1538
49	876	50	1.2168
50	392	45	0.6674
51	496	36	2.1110
52	612	50	1.1184
53	2856	56	23.4144
54	5040	125	17.5742
55	5050	117	9.5480
56	4788	79	34.4360
57	734	45	1.2338
58	362	32	1.1116
59	230	19	1.2574
60	544	34	1.3540
61	604	27	0.7912
62	518	22	4.0970
63	328	22	2.1262
64	460	36	4.2198
65	13420	75	49.7243
66	6016	82	31.4980
67	5386	104	10.0856

Table C-IIIB (Continued)

Station	Indiv. $/ \mathrm{m}^{2}$	Species	Biomass/m ${ }^{2}$
68	3644	111	10.5004
69	5228	84	27.0502
70	8156	69	37.8773
71	194	25	1.3332
72	282	33	2.1374
73	470	36	3.6486
74	308	27	1.8482
75	1222	39	3.4662
76	726	34	3.7990
77	220	16	1.9128
78	576	28	3.4388
79	360	12	3.6200
80	262	25	1.7970
81	348	21	3.5076
82	302	22	3.4174
83	346	20	3.5292
84	398	20	2.7778
85	562	27	5.8410
86	244	20	2.0442
87	606	31	5.6492
88	2260	44	6.2638
89	2582	44	36.0316
90	2300	48	10.9624
91	20488	40	22.3042

Table C-IIIB (Continued)

Station	Indiv. $/ \mathrm{m}^{2}$	Species	Biomass/m ${ }^{2}$
92	780	25	3.7028
93	394	28	1.9204
94	264	25	1.9808
95	5188	66	19.2084
96	8570	73	39.6350
97	4426	98	9.3643
98	6292	106	10.9820
99	8306	88	42.0925
100	4712	64	19.6396
101	4124	39	3.4114
102	678	23	3.7268
103	4860	29	2.8828
104	366	38	1.3976
105	520	48	1.6470
106	504	38	1.7966
107	458	34	1.9298
111	826	29	0.6476
112	580	22	0.5182
113	94	12	0.2824
114	280	21	0.6632
115	108	18	0.8110
116	234	22	2.0396
117	340	35	1. 9650
118	466	33	3.3754


Station	Indiv. $/ \mathrm{m}^{2}$	Species	Biomass/m ${ }^{2}$
119	280	22	1.5960
120	702	48	1.7716
121	196	16	1.8456
122	560	35	1.6922
123	334	29	1.4008
124	340	21	1.7602
125	218	14	1.9994
126	1450	56	4.2782
127	950	41	1.6794
128	380	36	1. 3540
129	254	23	2. 3270
130	280	22	1.9118
131	250	19	1.7148
132	406	23	4.1502
133	496	23	4.5220
134	246	24	2.1006
135	324	36	2.2148
136	2942	38	2.5162
137	6950	49	4.4848
141	3488	35	2.9864
142	1370	49	2.5250
143	8264	85	15.9813
144	7178	131	10.9714
145	1126	46	1.7278

Table C-IIIB (Continued)

Station	Indiv./m ${ }^{2}$	Species	Biomass/m2
146	1472	50	2.2604
147	11660	108	10.7238
148	7354	112	14.6613
149	4676	100	9.8605
150	10682	101	10.5598
151	1190	46	1. 6640
152	944	29	1.2118
158	300	23	0.5476
160	2960	64	23.9885
161	730	57	1.2896
162	500	39	1.0354
163	578	26	0.9414
164	234	25	0.7436
165	348	33	1.4096
166	422	32	1.0586
167	194	30	1. 3140
168	1086	50	2.9556
169	2352	61	13.7906
173	374	22	2.6316
174	644	26	3.6262
175	26320	48	1.5858
176	27782	50	12.9752
177	43802	45	11.9920
178	2368	26	4.2732


Station	Indiv. $/ \mathrm{m}^{2}$	Species	Biomass/m ${ }^{2}$
179	8968	35	6.8374
180	1144	37	3.2452
181	12124	49	5.9090
182	6956	60	8.4408
182	922	53	1.5952
184	832	16	1.1374
185	1500	35	4.2178
186	9454	42	10.9960
187	3436	46	5.1860
188	7654	64	52.2932
189	2346	34	4.9940
190	7826	38	13.3060
191	2128	42	9.7246
192	8370	43	23.9742
193	5234	43	118.2954
194	14556	41	23.1216
195	1650	68	1.9506
196	556	35	3.1810
197	820	52	1.9728
198	874	46	1.3334
199	942	47	2.4080
200	876	47	2.5800
201	626	37	1.7180
202	802	42	1.8898


Station	Indiv. $/ \mathrm{m}^{2}$	Species	Biomass $/ \mathrm{m}^{2}$
203	478	30	1.0848
204	970	40	1.9394
205	1188	40	1.0548
206	800	39	3.0786
207	1266	58	2.2134
208	1342	68	2.4654
209	2880	81	18.5452
214	11018	61	35.1914
215	2802	52	5.7724
216	482	20	1.1456
217	498	13	0.6968
218	434	15	0.7142
219	284	13	0.4108
220	424	12	0.9504
221	3502	79	2.9180
222	1682	36	2.4902
223	2968	44	2.2998
226	2586	43	2.4572
228	2308	37	4.1524
230	2918	43	3.6720
232	1196	42	1.5784
234	2708	50	2.6904
236	2714	45	2.2974
238	1380	41	1.8392


Station	Indiv. $/ \mathrm{m}^{2}$	Species	Biomass/m ${ }^{2}$
240	3092	40	2.1084
241	3892	43	1.9948
242	2970	46	4.1384
246	752	40	3.3912
248	1472	49	3.2412
249	572	39	1.8780
251	1464	48	1.5018
253	3070	52	3.2844
256	660	41	2.1844
259	3378	52	2.9692
261	3306	50	3.4034
262	3338	49	2.5380
264	2350	42	2.0454
266	3950	57	2.4444
267	3736	57	3.5886
268	2692	46	1. 4866
269	4362	46	1.3510
270	6950	51	2.1540
271	3118	39	1.7682
272	892	37	1.8036
273	2786	36	7.1870
274	3126	36	17. 3958
275	1310	27	32.7444
276	1922	39	45.0134

Table C-IIIB (Continued)

Station	Indiv. $/ \mathrm{m}^{2}$	Species	Biomass/m ${ }^{2}$
277	2894	27	53.9304
278	1580	26	30.5072
279	2266	23	62.0158
280	4322	34	73.0873
281	2118	29	29.7808
282	2896	35	9.5252
283	56	14	0.1612
284	4146	94	22.6546
285	5310	83	2.0558
286	5114	63	2.0210
287	4392	43	13.6666
288	15670	56	25.1282
293	830	26	2.0946
297	1246	36	1.8320
298	2428	41	2.8772
299	270	24	1.2906
300	2242	34	1.4676
302	3648	36	2.4482
303	4202	44	2.0492
308	932	33	1.8282
310	1406	29	1.4542
312	242	22	0.9440
313	396	22	1.2776
315	422	29	1.1746

Table C-IIIB (Continued)

Station	Indiv. $/ \mathrm{m}^{2}$	Species	Biomass/m ${ }^{2}$
316	1348	33	2.1440
319	370	25	1.0062
324	2308	51	1.7382
325	2530	70	24.8204
330	350	19	1.4008
332	526	28	2.7948
335	222	19	1.5616
336	338	23	1.4060
343	202	25	1. 2062
345	148	22	1.6104
346	554	33	1.5344
347	184	14	1. 3558
348	344	22	1.6654
349	606	23	0.6378
350	2634	33	2.8448
351	2670	47	1.4116
352	1588	34	1.2284
353	978	33	1.5402
354	1618	33	1.7022
356	750	29	1.1032
357	1014	44	3. 5274
358	766	37	11.2380
359	292	18	2.0092
360	4890	32	5.1258
409			

Table C-IIIB (Continued)

Station	Indiv. $/ \mathrm{m}^{2}$	Species	Biomass $/ \mathrm{m}^{2}$
361	2754	33	4.3550
362	716	28	4.3700
364	2030	52	8.7600
365	910	36	6.0460
366	218	25	3.1920
367	176	24	0.4388
368	308	30	1.6104
369	286	26	1.3112
370	198	25	1.0784
371	302	28	2.7152
372	278	28	1.3738
373	228	30	0.5786
374	1654	49	1.8262
375	2088	45	2.0020
376	908	42	1.6968
377	746	39	1.1582
378	168	23	0.7684
380	968	43	2.0358
381	1446	47	2.5378
382	1286	52	2.2990
383	748	40	20.0198
384	642	40	1. 2362
385	754	37	1.0252
386	488	39	0.9384

Table C-IIIB (concluded)

Station	Indiv. $/ \mathrm{m}^{2}$	Species	Biomass $/ \mathrm{m}^{2}$
387	496	34	1.4614
388	750	39	0.9964
389	712	43	2.2810
390	1182	54	1.3676
391	896	44	2.2886

In accorćance with jetter from DAEN-RDC, DAEN-ASI ciated 22 July 1977, Subject: Facsimije Catalog Cards for Laboratory Technical Publications, a facsimile catalog card in Library of Congress MARC format is reproduced be] ow.

Richardson, Michael Donald
Aquatic disposal field investigations, Columbia River disposal site, Oregon; Appendix C: The effects of dredged material disposal on benthic assemblages / by Michael D. Richardson, Andrew G. Carey, Jr., William A. Colgate. School of Oceanography, Oregon State University, Corvallis, Oregon. Vicksburg, Miss. : U. S. Waterways Experiment Station ; Springfield, Va. : available from National Technical Information Service, 1977.

411 p. : ill. ; 27 cm . (Technical report - U. S. Army Engineer Waterways Experiment Station ; D-77-30, Appendix C)

Prepared for Office, Chief of Engineers, U. S. Army, Washington, D. C., under Contract No. DACW57-75-C-0137 and DACW57-76-C-0092 (DMRP Work Unit No. 1A07C)

Tables C-IA, C-IB, C-IIB, and C-IIC on microfiche in pocket. References: p. 203-208.

1. Benthos. 2. Columbia River disposal site. 3. Disposal areas. 4. Dredged material disposal. 5. Field investigations.
(Continued on next card)

Richardson, Michael Donald
Aquatic disposal field investigations, Columbia River disposal site, Oregon; Appendix C: The effects of dredged material disposal on benthic assemblages ... 1977.
(Card 2)
6. Sediment. I. Carey, Andrew G., joint author. II. Colgate, William A., joint author. III. United States. Army. Corps of Engineers. IV. Oregon. State University, Corvallis. School of Oceanography. V. Series: United States. Waterways Experiment Station, Vicksburg, Miss. Technical report ; D-77-30, Appendix C.
TA7.W34 no.D-77-30 Appendix C
REPORT TITLE Aquatic Disposal Field Investigations, Columbia River
D1sposal Site, Cregon; The Effects of Dredged Material Disposal
on Benthic Assemblages
Tables C-1A, $C-1 B, C-11 B$, and C-11C
REPORT NO. TR D-77-30, Appendix C COPIES OF MICROFICHE ..... 750
JOB NO. 607-n. 98. B8AROL PRIORITY KO. ..... 42
NO. OF PAGES RETURN ORIGINALS TO DOIOThY BOOth, EES
pp 331-356, 357-381, 209-307, 308-312Dick mart/Mert Pisul


$\begin{aligned} & \text { station } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & S-k \\ & \text { Grab } \\ & \text { mo. } \end{aligned}$	$\begin{gathered} \text { Cruise } \\ \text { no. } \\ \hline \end{gathered}$	Larleude	Londtude	Date	$\begin{aligned} & \text { Boteon } \\ & \text { rite } \end{aligned}$	$\begin{gathered} \text { Depth } \\ \text { (f) } \end{gathered}$	$\begin{aligned} & \text { Sediment } \\ & \text { Voluen } \\ & \text { (cc) } \end{aligned}$	$\begin{gathered} \text { sediment } \\ \text { Type } \end{gathered}$	$\begin{gathered} \text { Screc.n } \\ \text { size } \\ \text { (me) } \\ \hline \end{gathered}$	Coments
21	21	C7409	$46^{\circ} 16.0^{\circ}$	$124^{\circ} 08.0^{\circ}$	1 oct 74	15:01	12	--	--	1.0	
22	22	-	$46^{\circ} 16.0^{\circ}$	$124^{\circ} 10.0^{\circ}$	-	15:14	26	--	--	"	
23	23	-	$46^{\circ} 16.0^{\prime}$	$124^{\circ} 12.0^{\circ}$	*	15:25	45	--	--	*	
24	24	-	$46^{\circ} 16.0^{\circ}$	$124^{\circ} 14.5^{\circ}$	$\cdots$	13:46	63	--	-	*	
25	25	-	$46^{\circ} 16.0^{\circ}$	$124^{\circ} 17.0^{\circ}$	$\cdots$	16:16	88	-	--	$\cdots$	
26	26	-	$46^{\circ} 15.0^{\circ}$	$124^{\circ} \mathrm{l}$. $2^{\circ}$	2 Oct 74	12:58	46	--	-	$\cdots$	
27	27	-	$46^{\circ} 14.5^{\prime}$	$124^{\circ} 11.25^{\prime}$	-	13:23	48	-	--	$\cdots$	
28	20	-	$46^{\circ} 14.5^{\circ}$	$124^{\circ} 10.75^{\prime}$	-	13:35	48	-	--	*	
29	27	-	46* $14.5^{\circ}$	$124^{\circ} 10.5^{\prime}$	-	13:43	39	--	--	*	
30	3	-	$46^{\circ} 14.0^{\prime}$	$124^{\circ} 11.25^{\circ}$	-	14:05	50	--	--	"	
31	$3 i$	-	$46^{\circ} 14.0^{\circ}$	$124^{\circ} 10.75^{\circ}$	-	14:17	44	--	--	$\cdots$	
32	32	-	$46^{\circ} 14.0^{\circ}$	$124^{\circ} 10.25^{\prime}$	$\cdots$	14:27	28	--	--	"	
33	33	*	$46^{\circ} 14.0^{\circ}$	$124^{\circ} 10.0^{\circ}$	-	14:37	27	--	--	"	
34	34	-	$46^{\circ} 14.0^{\circ}$	$124^{\circ} 09.25^{\prime}$	*	14:47	25	-	-	"	
35	35	-	$46^{\circ} 13.5^{\circ}$	$124^{\circ} 11.25^{\circ}$	$\cdots$	15:13	55	-	--	"	
36	36	-	$46^{\circ} 13.5^{\circ}$	$124^{\circ} 10.25^{\circ}$	-	15:40	39	-	--	${ }^{*}$	
37	37	-	46* $13.5^{\circ}$	$124^{\circ} 09.75^{\circ}$	-	15:46	33	--	--	$\cdots$	
38	38	$\cdots$	$46^{\circ} 13.5^{\prime}$	124* 09.5'	$\cdots$	16:05	29	--	--	"	
39	39	-	$46^{\circ} 13.5^{\circ}$	$124^{\circ} 09.0^{\prime}$	*	16:15	27	--	--	"	*
40	40	-	$46^{\circ} 13.0^{\circ}$	$124^{\circ} 10.25^{\prime}$	*	16:34	49	--	--	"	


ration   No.	$\begin{aligned} & S-M \\ & \text { Grab } \\ & \mathbf{M o} \end{aligned}$	$\begin{array}{r} \text { Cruise } \\ \text { mo. } \\ \hline \end{array}$	Latitude	Longitude	Date	$\begin{gathered} \text { Brcice } \\ I_{n} \\ \hline \end{gathered}$	$\begin{gathered} \text { Depth } \\ (\mathbf{m}) \end{gathered}$	sediment Voluee (cc)	sediment Type	Screan Size  	Coments
41	41	C74098	$46^{\circ} 13.0{ }^{\circ}$	$124^{\circ} 10.0{ }^{\prime}$	$200 t 74$	16:50	41	--	--	1.0	
42	42	-	$46^{\circ} 13.0^{\prime}$	$124^{\circ} 09.5{ }^{\circ}$	-	17:00	38	--	--	-	
43	43	-	$46^{\circ} 13.0^{\circ}$	124* $09.0^{\circ}$	-	17:10	33	--	--	"	
;4	44	-	$46^{\circ} 12.5{ }^{\circ}$	$124^{\circ} 09.5{ }^{\circ}$	"	17:25	38	--	--	*	
i5	45	-	$46^{\circ} 12.5{ }^{\circ}$	$124^{\circ} 09.0^{\circ}$	-	17:30	37	--	--	*	
46	46	-	$46^{\circ} 12.5{ }^{\prime}$	$124^{\circ} 08.25^{\circ}$	-	17:4	32	--	--	-	
i 7	47	C7412B	$46^{\circ} 06.0{ }^{\text {r }}$	$124^{\circ} 12.9$ '	4 Dec 74	18:57	91	3,900		*	
	48	-	-	*	-	19:29	-	5,800		*	
	49	-	-	"	-	19:57	88	6,700		*	
	50	-	-	-	"	20:09	-	8,000		"	
	51	-	-	-	-	20:20	"	7,500		*	
	52	-	*		-	20:50	"	--	sand	--	Geological
48	53	*	46*06.0	$124^{\circ} 08.01$	*	21:28	70	5,600		1.0	
	54	-	-	-	-	21:36	-	2,500		*	
	55	-	"	-	-	21:45	-	2,500		.	
	56	-	-	-	-	21:53	*	3,100		*	
	57	-	-	-	"	22:00	*	3,100		"	
	58	-	-	-	-	22:08	*	--	sand	--	Geological
49	59	-	$46^{\circ} 06.0^{\circ}$	124* 04.5'	-	22:36	46	3,500		1.0	
	60	-	-	-	-	22:44	"	2,600		"	


station $m_{0}$	$\begin{gathered} s-m \\ \text { Grab } \\ \text { Mo. } \end{gathered}$	$\begin{gathered} \text { cruise } \\ \mathbf{M o} . \\ \hline \end{gathered}$	Letitude	Loagltude	Date	$\begin{gathered} \text { Botton } \\ \text { Time } \\ \hline \end{gathered}$	$\begin{gathered} \text { Depth } \\ \text { (1) } \end{gathered}$	sediment Volume (cc)	sediment Type	Screen Size (m)	Coments
49	61	c74128	$46^{\circ} 06.0^{\prime}$	224*04.51	4 Dec 74	22:49	46	3,600		1.0	
	62	-	-	-	-	23:02	-	3,600		*	
	63	-	$\bullet$	-	-	23:09	-	2,900		-	
	64	-	-	-	-	23:14	"	--	sand	--	Geological
50	65	-	$46^{\circ} 06.0^{\circ}$	124*01.0'	-	23:40	29	1,500		1.0	
	66	-	-	-	-	23:48	"	1,800		"	
	67	-	-	-	-	23:54	*	1,800		*	
	68	-	*	-	5 Dec 74	00:18	*	5,500		-	
	69	-	-	-	-	00:26	-	4,000		*	
	70	-	-	-	-	00:34	$\cdots$	--	sand	--	Geological
51	71	-	460 $09.0{ }^{\circ}$	124* $04.5{ }^{\circ}$	-	01:11	31	6,100		1.0	
	72	-	-	-	-	01:21	$\cdots$	5,000		*	
	73	-	-	-	-	01:30	-	5,500		*	
	74	-	-	-	-	01:37	-	5,500		*	
	75	-	-	-	-	01:45	*	5,300		*	
	76	-	-	-	-	01:52	-	--	sand	--	Geological
52	77	-	46* $09.0{ }^{\circ}$	124* 07.5'	-	03:08	47	6,000		1.0	
	78	-	-	-	-	03:16	-	3,000		*	
	79	-	-	-	-	03:32	*	7.400		*	
	80	-	-	*	-	03:40	*	4,600		"	



$8$				$\begin{aligned} & \frac{9}{4} \\ & \frac{8}{8} \\ & \frac{8}{4} \end{aligned}$						$\begin{aligned} & \overrightarrow{0} \\ & \stackrel{\rightharpoonup}{8} \\ & \stackrel{y}{8} \end{aligned}$						$\begin{aligned} & \overrightarrow{0} \\ & \stackrel{y}{8} \\ & \stackrel{8}{8} \end{aligned}$
	$\stackrel{\circ}{-}$ ．	－$\cdot$		；	$\stackrel{\bigcirc}{-}$					，	$\stackrel{\circ}{-}$					；
				\％						彭						号
	8	号	$\stackrel{8}{8}$	，	$\stackrel{8}{8}$	$\stackrel{\circ}{i}$	？	$\stackrel{3}{3}$		＋	$\stackrel{\circ}{6}$	$\stackrel{8}{\square}$	$\stackrel{\substack{3 \\ i}}{\square}$	$\stackrel{\square}{\circ}$		，
	\％＇	－$\cdot$	，	－	$\%$						$\approx$	－	－	－		－
$\frac{8}{2}$	$\begin{array}{ll} 8 \\ 88 \\ 8 \end{array}$	$\begin{array}{ll} \underset{\sim}{8} \\ \ddot{8} \end{array}$	$\stackrel{\circ}{8}$	$\stackrel{9}{8}$		$\stackrel{ٌ}{\square}$	$\underset{\sim}{\approx}$	$\stackrel{\otimes}{\partial}$	$\begin{aligned} & \stackrel{\otimes}{\ddot{\theta}} \end{aligned}$	ةٍ	$\stackrel{8}{\rightrightarrows}$	$\stackrel{\cong}{\Xi}$	$\stackrel{\otimes}{\ddot{\Xi}}$	$\stackrel{\sim}{\approx}$		$\stackrel{\sim}{3}$
8	$\begin{aligned} & z \\ & z \\ & y \\ & \hline \end{aligned}$			－			-	－		－	－					
氣					$\begin{aligned} & \dot{\dot{8}} \\ & \dot{\Xi} \end{aligned}$						$\begin{aligned} & \dot{n} \\ & \dot{p} \\ & \dot{\dot{j}} \end{aligned}$		．			
$\stackrel{8}{3}$		- '			$\begin{aligned} & \dot{\dot{\rightharpoonup}} \\ & \dot{̣} \\ & \dot{\oplus} \end{aligned}$	-					$\dot{+}$ $\dot{+}$					-
	$\underset{i}{z}$	. .		．		．		．		．				．		
\％${ }^{\text {a }}$	흥	$\bigcirc$	®	8	º	8	$\pm$	$\stackrel{\square}{3}$	$\Xi$	$\Xi$	$\cdots$	$\Xi$	$\cong$	$\stackrel{\square}{\square}$		$\pm$
	＊				is						\％					












$\begin{aligned} & \boldsymbol{n} \\ & \mathbf{n} \\ & \mathbf{y} \\ & 0 \\ & 8 \\ & 8 \end{aligned}$		$\begin{aligned} & -1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 8 \end{aligned}$						$\begin{gathered} \overrightarrow{0} \\ .0 \\ \hdashline-1 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$						$\begin{gathered} \overrightarrow{0} \\ 0 \\ -H \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \end{gathered}$						
$$	$\stackrel{0}{i}$	1	0	$=$	=	=	$=$	1	$\cdots$	$=$	$=$	$=$	$=$	1	$\underset{\sim}{\circ}$	$=$	=	$=$	=	1
								$\begin{aligned} & \text { B } \\ & \substack{0 \\ 0} \end{aligned}$												
	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \text { mi } \end{aligned}$	1	$\begin{aligned} & 8 \\ & 0 \\ & \text { N } \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \text { i } \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \text { mi } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { N } \\ & \text { ণ } \end{aligned}$	1	$\begin{aligned} & \circ \\ & \hline \\ & \text { m } \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \text { m } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \text { in } \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \mathrm{o} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \dot{\mathrm{F}} \end{aligned}$	1	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \text { in } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 8 \\ & + \\ & \infty \end{aligned}$	1
	아N	:	$\cdots$	=	=	$=$	$=$	$=$	$\stackrel{\sim}{\square}$	=	=	=	=	I	$\stackrel{\sim}{*}$	z	=	=	=	a
	$\begin{array}{r} 0 \\ \ddot{8} \\ \ddot{8} \end{array}$	$\stackrel{n}{8}$	$\begin{aligned} & \underset{\sim}{0} \\ & \ddot{8} \end{aligned}$	$\begin{aligned} & \underset{8}{8} \\ & \ddot{8} \end{aligned}$	$\begin{aligned} & \text { ח } \\ & \ddot{8} \end{aligned}$	$\begin{aligned} & \hat{n} \\ & \ddot{8} \end{aligned}$	$\begin{aligned} & n \\ & \ddot{8} \\ & \ddot{8} \end{aligned}$	$\begin{gathered} \ddot{O} \\ \ddot{O} \\ \ddot{O} \end{gathered}$	$\xrightarrow{+}$	N      -   -1	$\xrightarrow{\text { N}}$	$\begin{aligned} & 0 \\ & \underset{\sim}{\square} \\ & \ddot{-1} \end{aligned}$	$\begin{aligned} & \underset{\sim}{7} \\ & \underset{0}{-1} \end{aligned}$	0 $\sim$ $\sim$ -1	$$	$\begin{aligned} & \text { on } \\ & \underset{0}{-1} \end{aligned}$	$\begin{aligned} & \ddot{\delta} \\ & \ddot{~} \\ & \text { in } \end{aligned}$	- $\cdots$ $\ddot{8}$	$\square$      $\sim$	$\ddot{m}$ $\ddot{O}$
8 0 0	$\begin{aligned} & \text { が } \\ & 0 \\ & 8 \\ & 8 \\ & \infty \end{aligned}$	=	=	*	=	=	z	$=$	=	$=$	=	=	=	=	:	\%	:	8	:	$=$
0 0 0 0 0 0 0 9	$\begin{aligned} & \dot{0} \\ & \dot{0} \\ & \dot{0} \\ & \underset{i}{4} \end{aligned}$	:	$\begin{aligned} & \text { in } \\ & \infty \\ & 0 \\ & 0 \\ & \dot{\sim} \\ & \underset{\sim}{r} \end{aligned}$	=	z	=	=	=	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 0 \\ & \circ \\ & \stackrel{\rightharpoonup}{\sim} \\ & \underset{\sim}{n} \end{aligned}$	=	=	$=$	$\pm$	:	$\begin{aligned} & \text { in } \\ & \text {-i } \\ & 0 \\ & \underset{\sim}{r} \\ & \underset{\sim}{n} \end{aligned}$	\%	\%	2	$\pm$	=
	$\begin{aligned} & i n \\ & \dot{+} \\ & i \\ & i \end{aligned}$	\%	$\begin{aligned} & \dot{i} \\ & \dot{+} \\ & \dot{0} \\ & \dot{0} \end{aligned}$	=	$\pm$	$\pm$	z	=	$\begin{aligned} & - \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	=	=	=	=	8	$\begin{aligned} & \dot{0} \\ & \dot{1} \\ & \dot{7} \\ & \dot{0} \\ & \dot{0} \end{aligned}$	$\because$ $=$	=	$\varepsilon$	8	:
$\begin{array}{ll} 0 \\ \text {-1 } \\ \underset{y}{4} & 0 \\ \hline 2 \end{array}$	$\begin{gathered} \underset{\sim}{\underset{N}{7}} \\ \underset{\sim}{\mathbf{T}} \end{gathered}$	=	$\pm$	=	=	=	=	=	=	=	=	=	=	:	:	\%	z	$\varepsilon$	=	=
	$\underset{\sim}{\boldsymbol{N}}$	$\underset{\sim}{N}$	$\underset{\sim}{N}$	N N	$\underset{\sim}{N}$	$\underset{\mathrm{M}}{\stackrel{0}{2}}$	$\underset{\mathrm{N}}{\mathrm{~N}}$	$\underset{\sim}{\infty}$	$\begin{aligned} & \text { on } \\ & \text { el } \\ & \text { n } \end{aligned}$	OM	$\stackrel{-1}{N}$	$\underset{\sim}{\mathrm{N}}$	$\underset{\sim}{\underset{\sim}{m}}$	$\underset{\sim}{\text { H7 }}$	$\underset{\sim}{n}$	$\underset{\sim}{\sim}$	$\stackrel{\sim}{m}$	$\underset{\sim}{\infty}$	$\stackrel{9}{m}$	¢
$\begin{aligned} & \text { c } \\ & 0 \\ & -1 \\ & 4 \\ & 3 \\ & 3 \\ & 0 \end{aligned}$	\%		$\stackrel{\sim}{\sigma}$						ন						$\cdots$					


Station No.	S-M   Grab   No.	Cruise $\qquad$	Latitude	Long itude	Date	$\begin{gathered} \text { Bottom } \\ \text { Time } \\ \hline \end{gathered}$	Depth (m)	$\begin{gathered} \text { Sediment } \\ \text { Volume } \\ \text { (cc) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Sediment } \\ \text { Type } \\ \hline \end{gathered}$	Screen Size   (gm)	Comments
96	341	C7412B	$46^{\circ} 15.0^{\prime}$	$124^{\circ} 14.0^{\prime}$	8 Dec 74	02:47	67	9,300		1.0	
	342	"	"	"	"	02:53	"	7,600		$\cdots$	
	343	*	"	"	*	03:01	"	8,200		"	
	344	"	"	"	"	03:08	"	8,800		"	
	345	"	"	"	"	03:14	"	8,200		${ }^{\prime}$	
	346	"	"	"	"	03:20	"	--	sand	--	Geological
97	347	"	$46^{\circ} 15.0^{\prime}$	$124^{\circ} 17.0^{\prime}$	"	03:57	97	11,600		1.0	
	348	"	"	"	"	04:12	"	12,500		"	
	349	"	"	"	"	04:19	"	11,600		"	
	350	$\cdots$	"	"	"	04:31	"	12,700		"	
	351	"	"	"	${ }^{\prime}$	04:41	"	11,600		"	
	352	"	"	"	"	04:48	"	--	silty-sand	--	Geological
98	353	"	$46^{\circ} 16.0^{\prime}$	$124^{\circ} 17.0^{\prime}$	"	05:05	86	11,400		1.0	
	354	"	"	"	"	05:16	"	12,000		"	
	355	"	"	"	"	05:23	"	11,600		"	
	356	"	"	"	"	05:32	"	11,400		"	
	357	"	"	*	"	05:40	n	9,700		"	
	358	"	"	"	"	05:46	"	--	silty-sand	--	Geological
99	359	"	$46^{\circ} 16.0^{\prime}$	$124^{\circ} 14.5{ }^{\prime}$	${ }^{*}$	06:19	68	7,400		1.0	
	360	"	*	*	"	06:32	*	7,600		"	


$\begin{aligned} & \stackrel{0}{4} \\ & \stackrel{0}{0} \\ & \stackrel{8}{8} \\ & 0 \end{aligned}$							，			$\begin{gathered} 7 \\ \underset{0}{0} \\ \underset{8}{0} \\ 0 \\ 0 \\ 0 \end{gathered}$						$\begin{aligned} & \overrightarrow{0} \\ & 0 \\ & \vec{y} \\ & \overrightarrow{8} \\ & 0 \\ & 0 \end{aligned}$				
	$\underset{\sim}{0}$	：	＝	1	$\stackrel{-}{i}$	$=$	：	$=$	$=$	i	$\stackrel{-}{-}$	＝	：	：	＝	1	$\stackrel{\square}{-}$	：	$=$	：
				喣						$\begin{aligned} & 0 \\ & \tilde{0} \\ & 0 \\ & 1 \\ & \lambda \\ & \underset{\sim}{7} \\ & 0 \end{aligned}$						$\begin{aligned} & \text { N } \\ & \underset{\sim}{c} \\ & \hline \end{aligned}$				
	8 8 ®	$\begin{aligned} & 8 \\ & 8 \\ & i \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \text { oi } \end{aligned}$	1	$\begin{aligned} & \circ \\ & \hline 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \text { in } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{0}{0} \\ & \infty \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{0}{\infty} \\ & \dot{-} \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & \infty \end{aligned}$	1	$\begin{aligned} & 8 \\ & 0 \\ & \text { mi } \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & i \end{aligned}$	8      0   0	\％	8	1	$\begin{aligned} & \mathrm{O} \\ & \stackrel{8}{+} \\ & \text { n } \end{aligned}$	－	8 0 $\sim$	8   8   n
念	思	：	：	＝	$\stackrel{\infty}{\square}$	＝	：	$=$	$=$	$=$	$\stackrel{N}{\sim}$	＝	：	＝	：	$=$	$\cdots$	：	：	：
$\begin{aligned} & 8 \\ & 8_{4} \\ & \text { 品 } \\ & \hline \end{aligned}$	$\begin{aligned} & \ddot{ب} \\ & \ddot{0} \end{aligned}$	$\begin{aligned} & \stackrel{9}{\underset{8}{8}} \end{aligned}$	$\begin{gathered} \stackrel{\circ}{0} \\ \stackrel{\ddot{O}}{2} \end{gathered}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sigma}{n} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{-} \end{aligned}$	7 $\underset{6}{-}$	$\stackrel{7}{\underset{\sim}{\circ}}$	$\begin{aligned} & \stackrel{0}{\sim} \\ & \stackrel{\sim}{\circ} \end{aligned}$	$\underset{\sim}{8}$ $\underset{\circ}{\circ}$	$\begin{gathered} \tilde{m} \\ \ddot{\ddot{\circ}} \end{gathered}$	$\begin{aligned} & \stackrel{\sim}{n} \\ & \ddot{\circ} \end{aligned}$	$\begin{aligned} & 7 \\ & \ddot{8} \end{aligned}$	$\begin{aligned} & \text { İ } \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & \overrightarrow{\ddot{O}} \\ & \ddot{\circ} \end{aligned}$	$\stackrel{n}{0}$ $\stackrel{\circ}{\circ}$	응 $\ddot{8}$	$\begin{aligned} & \stackrel{\circ}{\ddot{\circ}} \\ & \ddot{\circ} \end{aligned}$	$\begin{aligned} & \tilde{\sim} \\ & \ddot{8} \end{aligned}$	$\begin{aligned} & \tilde{n} \\ & \ddot{\circ} \end{aligned}$	n $\ddot{8}$
$\begin{aligned} & \stackrel{8}{4} \\ & \Delta \end{aligned}$	$\begin{aligned} & \ddot{+} \\ & 0 \\ & \dot{y} \\ & \infty \end{aligned}$	：	2	\％	$=$	$=$	$=$	$:$	$=$	$=$	$=$	$=$	：	：	：				．	
	$\begin{aligned} & \dot{i} \\ & \underset{\sim}{i} \\ & \dot{\sim} \\ & \underset{\sim}{r} \end{aligned}$	：	：	＝		＝	＝	$=$	：	＝		：	：	－	$=$	$=$	$\begin{aligned} & \dot{0} \\ & \infty \\ & \stackrel{\infty}{\circ} \\ & \stackrel{+}{\underset{1}{2}} \end{aligned}$		－	－
	$\begin{aligned} & \dot{0} \\ & \dot{0} \\ & \dot{0} \\ & \dot{\phi} \end{aligned}$	＝	：	：	$\begin{aligned} & \dot{0} \\ & \dot{0} \\ & \dot{\circ} \\ & \dot{\circ} \end{aligned}$	$=$	$=$	$=$	$=$	$=$	$\circ$   $\dot{0}$      0   0	$=$	：	：	$z$	＝	$\begin{aligned} & 0 \\ & \dot{0} \\ & \dot{\sim} \\ & \dot{0} \end{aligned}$		－	：
$\stackrel{\AA}{\stackrel{y}{3}} \dot{己}$	$\underset{\underset{\sim}{\underset{\sim}{*}}}{\underset{\sim}{4}}$	：	：	$=$	$=$	：	$=$	＝	：	＝	＝	＝	$:$	：	：	：	：	：	：	：
$x_{i}^{x}$	$\vec{\sim}$	Nom	$\underset{\sim}{\mathbf{N}}$	$\underset{\sim}{\mathbf{0}}$	$\stackrel{0}{0}$	-૦	$\widehat{\mathbf{p}}$	$\stackrel{\infty}{\infty}$	on	$\stackrel{\circ}{\mathrm{m}}$	$\underset{\mathrm{m}}{\mathrm{~m}}$	$\underset{\sim}{N}$	$\stackrel{m}{n}$	$\stackrel{\sim}{\text { ® }}$	$\stackrel{n}{n}$	$\stackrel{0}{\mathrm{~m}}$	－	$\stackrel{\infty}{\text { m }}$	$\stackrel{n}{m}$	－
	®				$\stackrel{8}{9}$						$\underset{\sim}{-1}$						$\stackrel{\sim}{O}$			


Station No.	$\begin{aligned} & S-M \\ & \mathrm{Sxa} \\ & \mathrm{No} \end{aligned}$	Cruise No.	Int	Itude	Longitude	Date				$\begin{aligned} & \text { 8adinent } \\ & \text { Volve } \\ & \text { (ce) } \end{aligned}$	Sedisent DyP	Beren size   (a)	Comenta
102	381	C7413	46*	$16.0^{\prime}$	$124^{\circ} 08.0^{\circ}$	8 Dec	74	09: 59	13	4,200		1.0	
	382	-		$\cdots$	-	*		10:02	$\cdots$	--	sand	--	Geological
103	383	$\cdots$	$46^{\circ}$	15.0'	$124^{\circ} 10.0^{\circ}$	-		10:25	31	2,600		1.0	
	384	-		-	$\cdots$	$\cdots$		10:29	-	5,300		$\cdots$	
	385	-		-	$\cdots$	$\cdots$		10:33	$\cdots$	5,300		$\cdots$	
	386	$\cdots$		$\cdots$	$\cdots$	*		10:37	$\cdots$	6,500		$\cdots$	
	387	$\cdots$		${ }^{\bullet}$	${ }^{*}$	$\cdots$		10:40	$\cdots$	5,300		$\cdots$	
	388	$\cdots$		$\cdots$	$\cdots$	-		10:47	$\cdots$	-	sand	--	Geologlcal
104	389	*	$46^{\circ}$	11.5'	$124^{\circ} 06.5^{\circ}$	$\cdots$		11:41	29	5,000		1.0	
	390	*		$\cdots$	$\cdots$	-		$11: 47$	*	4,600		*	
	391	*		$\cdots$	$\cdots$	$\cdots$		11:51	$\cdots$	5,500		$\cdots$	
	392	$\cdots$		$\cdots$	${ }^{*}$	-		11:55	$\cdots$	5,500		$\cdots$	
	393	$\cdots$		$\cdots$	$\cdots$	$\cdots$		11:59	$\cdots$	7,400		*	
105	394	$\cdots$		$\cdots$	$\cdots$	"		12:04	$\cdots$	5,300		$\cdots$	
	395	$\cdots$		$\cdots$	$\cdots$	${ }^{*}$		12:10	$\cdots$	4,400		*	
	396	-		$\cdots$	-	-		12:15	-	8,200		$\cdots$	
	397	*		*	*	-		12:19	$\cdots$	5,000		$\cdots$	
	$3 ¢ 8$	$\cdots$		$\cdots$	$\cdots$	*		12:24	$\cdots$	4.400		*	
106	399	-		-	$\cdots$	$\cdots$		13:37	$\cdots$	5,500		$\cdots$	
	404	-		$\cdots$	$\bullet$	-		17:33	-	5,300		$\cdots$	



$\begin{aligned} & \text { Station } \\ & \text { No. } \end{aligned}$	S-M   Grab No.	$\begin{gathered} \text { Cruise } \\ \text { No. } \end{gathered}$	Latitude	Longitude	Date		Botton Tine	$\begin{gathered} \text { Depth } \\ \text { (I) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Sediment } \\ \text { Voluee } \\ \text { (cc) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Sediment } \\ \text { Type } \\ \hline \end{gathered}$	Screen size (ma)	Comments
109	425	C75010	$46^{\circ} 06.0^{\circ}$	$124^{\circ} 25.0^{\prime}$	20 Jan	75	02:27	124	--	silty-sand	--	Gological
110	426	-	$46^{\circ} 36.0^{\circ}$	$124^{\circ} 18.0^{\prime}$	-		03:17	100	10,500		1.0	
	427	*	-	-	-		03:28	"	11.400		*	
	428	-	"	"	"		03:37	"	9,000		"	
	429	-	-	"	"		03:52	"	--	sand	--	Geological
	430	"	"	"	n		04:06	"	10,000		1.0	
	431	"	*	"	"		04:15	"	11. 600		"	
111	432	$\cdots$	$46^{\circ} 15.55^{\circ}$	$124^{\circ} 05.4^{\circ}$	21 Jan	75	15:28	18	4,600		*	
	433	"	"	*	*		15:37	"	3,500		*	
	434	*	*	*	"		15:43	"	5.500		$\cdots$	
	435	"	$\cdots$	"	"		16:02	20	5.300		$\cdots$	
	436	"	"	"	*		16:13	18	3,000		*	
	437	"	*	-	"		16:20	20	--	sand	--	Geological
112	438	-	$46^{\circ} 15.7^{\prime}$	$124^{\circ} 05.0^{\circ}$	*		16:42	"	5,500		*	
	439	-	"	"	"		16:55	"	-. 000		*	
	440	"	"	"	"		17:01	*	3,200		*	
	441	"	"	"	*		17:05	"	3,500		$\cdots$	
	442	-	"	*	-		17:08	"	5,000		"	
	443	"	"	-	*		17:12	"	--	sand	--	Geological
113	444	*	46* $25.5{ }^{\circ}$	$124^{\circ} 05.8{ }^{\circ}$	-		17:47	*	5,000		*	



			$\begin{aligned} & \overrightarrow{0} \\ & 0 \\ & 8 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$						8 -8 9						$$				
${ }^{5}$	$\stackrel{\circ}{-}$	：	1	$\stackrel{\bigcirc}{-}$	＝	：	＝	$=$	；	$\bigcirc$	$=$	＝	：	：	！	$\stackrel{\circ}{-}$	：	：	＝：
			$\stackrel{0}{\tilde{j}}$						号						\％				
	$\begin{aligned} & 8 \\ & \stackrel{8}{2} \end{aligned}$	$\stackrel{\circ}{\circ}$	i	$\stackrel{8}{\underset{\sim}{\sim}}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \text { in } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { in } \\ & i \end{aligned}$	$\begin{aligned} & \stackrel{8}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{8}{0} \\ & \underset{\sim}{2} \end{aligned}$	i	\％	$\stackrel{\stackrel{8}{\circ}}{\substack{\text { ¢ }}}$	$\stackrel{8}{0}$	8   0   0   1	$\stackrel{8}{\substack{0}}$	；	$\frac{8}{6}$	－	$\stackrel{8}{\text { ¢ }}$	¢
乭	$\underline{\sim}$	＝	：	m	$=$	：	：	$=$	$=$	¢	：	$=$	＝	＝	$=$	$\stackrel{\infty}{\sim}$	$=$	：	$=$
$\frac{8}{4}$	$\begin{aligned} & \stackrel{m}{7} \\ & \stackrel{\sim}{a} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\sim}{0} \end{aligned}$	$\stackrel{\stackrel{+}{i}}{\stackrel{\sim}{i}}$	$\begin{aligned} & n \\ & \ddot{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{n}{i} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{-} \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{7} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\Phi}{\boldsymbol{7}}$	$\stackrel{\underset{\sim}{ت}}{\underset{\sim}{2}}$	$\begin{aligned} & \stackrel{\circ}{7} \\ & \underset{\sim}{7} \end{aligned}$	$\underset{\underset{\exists}{\underset{~}{I}}}{ }$	$\begin{aligned} & \stackrel{0}{n} \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\ddot{\sim}} \\ & \end{aligned}$		$\begin{aligned} & \vec{\sim} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \stackrel{n}{\ddot{\sim}} \end{aligned}$	$\begin{aligned} & \vec{\sim} \\ & \underset{\sim}{n} \end{aligned}$	$\underset{\sim}{\ddot{\sim}}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{\ddot{\sim}} \end{aligned}$
$\begin{aligned} & 5 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \approx \\ & \underset{\sim}{5} \\ & \underset{\sim}{2} \end{aligned}$	：	$=$	$=$	$=$	：						$=$	：	$=$					
		．	：	$\begin{aligned} & \dot{0} \\ & \dot{\circ} \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$	：	：	：	＝	＝	$\begin{aligned} & \dot{o} \\ & \dot{\circ} \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$	－	$=$	$=$	：	$=$		＝	＝	－
0 0 3 3	$\begin{aligned} & \bar{n} \\ & \\ & \dot{\sim} \end{aligned}$	，	－	$\begin{aligned} & \dot{\sim} \\ & \underset{\sim}{\square} \\ & \stackrel{\circ}{\circ} \end{aligned}$	－	：	：	＝	－	$\begin{aligned} & \dot{m} \\ & \dot{m} \\ & \stackrel{\circ}{\circ} \end{aligned}$	－	＝	：	：	$=$	$\begin{aligned} & \dot{m} \\ & \dot{m} \\ & \stackrel{\circ}{\circ} \end{aligned}$	．	：	：
$\text { 总 } \dot{0}$	$\begin{aligned} & \text { O} \\ & \text { in } \\ & 0 \end{aligned}$	－	－	－	－	：	＊	：	：	－	－	：	：	＝	，	$=$	－	：	－
$x_{i}^{x}{ }_{i}^{9}$	$\stackrel{\square}{\square}$	$\stackrel{\square}{\square}$	$\stackrel{\text { ¢ }}{\square}$	－	9	$\stackrel{\circ}{\circ}$	$\underset{\square}{7}$	N	$\stackrel{m}{*}$	$\stackrel{\rightharpoonup}{*}$	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{4}$	$\underset{\sim}{*}$	$\stackrel{\infty}{+}$	$\stackrel{9}{4}$	$\stackrel{\square}{\square}$	T	\％	¢
$\underset{\underset{\sim}{\underset{\sim}{g}} \underset{z}{2}}{ }$	$\stackrel{\circ}{\rightrightarrows}$			$\exists$						$\stackrel{\infty}{\rightrightarrows}$						$\underset{ }{\exists}$			



station .	$\begin{gathered} s-m \\ \text { Grab } \\ \text { mo. } \\ \hline \end{gathered}$	$\begin{gathered} \text { Cruise } \\ \text { No. } \end{gathered}$	Latitude	Longitude	Date	$\begin{gathered} \text { Boteon } \\ \text { Time } \\ \hline \end{gathered}$	$\begin{gathered} \text { Depth } \\ (m) \\ \hline \end{gathered}$	sodiment   Voluen (cc)	sediment Type	$\begin{gathered} \text { screen } \\ \text { sise } \\ \text { (n) } \end{gathered}$	Coments
123	505	C7501D	$46^{\circ} 11.01$	124* $05.0^{\circ}$	22 Jan 75	02:23	26	3,800		1.0	
	506	-	-	-	-	02:32	-	3,900		-	
	507	-	-	-	-	02:34	-	3,900		"	
	508	-	-	-	"	02:39	-	4,500		-	
	509	-	-	*	"	02:42	*	--	sand	--	Geological
124	510	-	46* $12.75{ }^{\circ}$	124*06.0'	-	03:01	20	3.800		1.0	
	511	-	-	-	*	03:06	-	3,900		"	
	$5!$.	-	-	-	*	03:14	-	3.900		"	
	51.	-	-	*	"	03:17	-	4,000		-	
	514	*	-	-	*	03:25	-	4,500		"	
	515	-	*	-	"	03:29	-	--	sand	--	Gear H1Cal
125	516	-	$46^{\circ} 12.5{ }^{\circ}$	$124^{\circ} 07.0^{\circ}$	*	03:41	26	4,200		1.0	
	517	-	-	-	*	03:48	"	4,700		"	
	518	*	-	*	"	03:50	"	6,301)		"	
	519	-	*	"	"	03:55	27	3,500		"	
	520	-	*	"	"	04:04	-	6.200		"	
	521	-	-	-	"	04:09	"	--	sand	--	Geological
126	522	-	46* $15.0{ }^{\prime}$	$124^{\circ} 11.0^{\circ}$	"	04:55	40	6,400		1.0	
	523	-	-	"	"	04:59	*	5,100		"	
	524	*	-	"	*	05:04	"	5,300		"	




$\left.\begin{aligned} & 0 \\ & \stackrel{0}{8} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$																	$\begin{aligned} & 7 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & -1 \\ & 8 \\ & 0 \end{aligned}$			
	$\stackrel{i}{i}$	＝	$=$	＝	1	$\stackrel{i}{i}$	$=$	：	＝	：	i	$\stackrel{0}{-1}$	$=$	$=$	＝	＝	i	$\stackrel{0}{i}$	＝	＝
					$\begin{aligned} & \text { T } \\ & \text { N } \end{aligned}$						『్						¢			
	$\begin{aligned} & 8 \\ & \text { o } \\ & \text { in } \end{aligned}$	$\begin{aligned} & 8 \\ & \text { in } \end{aligned}$	$\begin{aligned} & 8 \\ & \text { in } \\ & \text { in } \end{aligned}$	$\begin{aligned} & 8 \\ & \text { in } \end{aligned}$	1	$\begin{aligned} & 8 \\ & i \\ & i n \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 8 \end{aligned}$	$\begin{aligned} & \circ \\ & \text { ón } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { o } \\ & \text { in } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \end{aligned}$	1	$\begin{aligned} & \dot{\circ} \\ & \text { m } \\ & \dot{m} \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 0 \\ & \dot{m} \end{aligned}$	음	8 in	$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & \text { 을 } \\ & \text { min } \end{aligned}$	8      7	$\circ$ 0 in
家家	－	E	＊	＊	＊	$\stackrel{\sim}{-1}$	＝	＝	＝	＝	$=$	N	＝	：	$=$	$=$	－	$\underline{m}$	－	＊
	$\begin{aligned} & 0 \\ & 0 \\ & \ddot{-} \end{aligned}$	$\begin{aligned} & \text { 음 } \\ & \ddot{0} \end{aligned}$	7 $\ddot{7}$ $\ddot{7}$	$\begin{aligned} & \underset{\sim}{7} \\ & \ddot{\sim} \end{aligned}$	$\infty$ $\ddot{-1}$	$\begin{gathered} \underset{\sim}{0} \\ \ddot{\sim} \end{gathered}$	N   $\ddot{\sim}$  	$\begin{aligned} & \stackrel{0}{0} \\ & \ddot{O} \end{aligned}$	$\begin{aligned} & \text { p} \\ & \underset{\sim}{\ddot{O}} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \ddot{\theta} \end{aligned}$	$\begin{gathered} \underset{\sim}{\ddot{O}} \\ \ddot{\sim} \end{gathered}$	$\begin{aligned} & \text { N } \\ & \ddot{O} \end{aligned}$	$\begin{aligned} & \text { Ni } \\ & \ddot{\theta} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \ddot{\sim} \end{aligned}$	$\begin{aligned} & \text { 음 } \\ & \ddot{O} \end{aligned}$	$\begin{aligned} & \text { İ } \\ & \text { ت } \end{aligned}$	$\begin{aligned} & 8 \\ & \frac{8}{7} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{\prime} \end{aligned}$	$\begin{aligned} & \underset{\sim}{0} \\ & \ddot{7} \end{aligned}$	
$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & n \\ & \text { f } \\ & \text { n } \\ & \end{aligned}$	：	－	：	：	$=$	－	$=$	．	＊	＊	\％	$=$	：	：	．				$\cdots$
	$\begin{aligned} & \dot{\circ} \\ & \text { ò } \\ & \dot{\sim} \\ & \text { స్ } \end{aligned}$	\％	：	：	\％	$\begin{aligned} & \text { in } \\ & \dot{\circ} \\ & \dot{\circ} \\ & \underset{\sim}{\circ} \end{aligned}$	：	：	：	：	＊	$\begin{aligned} & \dot{0} \\ & \dot{1} \\ & \dot{1} \\ & \dot{H} \end{aligned}$	2	：	：	：	$8$	$\begin{aligned} & \text { in } \\ & \dot{\sim} \\ & \text { - } \\ & \text { ̈ㅜ } \end{aligned}$		\％
$\begin{aligned} & 0 \\ & 07 \\ & 7 \\ & 7 \\ & 9 \end{aligned}$	$\begin{aligned} & i n \\ & \tilde{\sim} \\ & \dot{\sim} \\ & \dot{p} \end{aligned}$	：	＊	：	：	$\begin{aligned} & \text { in } \\ & \dot{n} \\ & \dot{q} \\ & \dot{q} \end{aligned}$	＝	＝	$=$	＝	：	$\begin{aligned} & \text { in } \\ & \dot{\sim} \\ & \dot{\circ} \end{aligned}$	＝	：	\％	－	：	$\begin{aligned} & \text { in } \\ & \text { n } \\ & 0 \\ & 0 \end{aligned}$		－
$\begin{gathered} \text { © } \\ \text { 年 } \\ \text { B } \\ 0 \end{gathered}$	A        	：	：	：	＊	：	：	\％	\％	\％	\％	＝	＊	：	2	：	$\cdots$	：	－	＊
$x_{i}^{9}$	n	:	$\begin{aligned} & \text { N } \\ & \text { in } \end{aligned}$	$$	oio	응	$\underset{\sim}{n}$	$\underset{i}{N}$	$\stackrel{n}{n}$	$\stackrel{\pi}{i n}$	$\stackrel{n}{n}$	$\stackrel{\circ}{i}$	N	$\stackrel{\infty}{n}$	in	品	～～	$\underset{\sim}{\boldsymbol{\sim}}$	$\underset{\sim}{\infty}$	\＄
$\begin{array}{ll} 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\underset{\sim}{\underset{\sim}{m}}$					$\stackrel{\text { ¢ }}{\text {－}}$						$\stackrel{\sim}{\sim}$						$\stackrel{\sim}{-1}$		







$\begin{aligned} & \stackrel{9}{4} \\ & \stackrel{0}{0} \\ & \stackrel{1}{8} \\ & 8 \end{aligned}$		$\begin{aligned} & \overrightarrow{0} \\ & \ddot{8} \\ & \overrightarrow{8} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$						$\begin{aligned} & \overrightarrow{0} \\ & 0 \\ & \ddot{0} \\ & \underset{8}{8} \\ & 8 \end{aligned}$						$\begin{aligned} & \overrightarrow{0} \\ & \ddot{0} \\ & \stackrel{8}{8} \\ & \underset{0}{0} \end{aligned}$						İ   0   0   0   0   0   0   0
	$\stackrel{\circ}{-}$	1	$=$	$=$	＝	＝	$=$	；	$\stackrel{-}{-}$	$=$	$=$	$=$	$\stackrel{\sim}{\circ}$	1	$\stackrel{+}{-}$	$=$	$=$	$=$	$\stackrel{\sim}{0}$	i
		¢																		
	$\begin{aligned} & \circ \\ & \hline 8 \\ & + \end{aligned}$	1	$\begin{aligned} & \text { O} \\ & \text { in } \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \dot{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \circ \\ & 0 \\ & 0 \\ & \hline- \end{aligned}$	8 $\stackrel{8}{7}$ $=$	1	$\stackrel{8}{\mathrm{~B}}$	8	i	－	\％	i	－	$\stackrel{\circ}{\circ}$	8   $\sim$   $\sim$	$\stackrel{8}{8}$	8      -1   -1	1
	（\％	：	\＆	＝	＝	＝	＝	＝	$\stackrel{\sim}{\sim}$	＝	$=$	$=$	$=$	：	$\stackrel{\square}{\infty}$	＝	＝	＝	＝	＝
	$\begin{aligned} & \text { ö } \\ & \ddot{\circ} \end{aligned}$	$\begin{aligned} & 0 \\ & \ddot{8} \end{aligned}$	$\begin{aligned} & \text { ロ } \\ & \stackrel{3}{8} \end{aligned}$	$\begin{aligned} & \text { ٓ } \\ & \ddot{\circ} \end{aligned}$	$\begin{aligned} & \vec{o} \\ & \ddot{O} \end{aligned}$		$\stackrel{n}{ت}$	$\begin{gathered} \underset{\sim}{\square} \\ \hline \end{gathered}$	$\begin{aligned} & \stackrel{0}{\sim} \\ & \dot{8} \end{aligned}$	$\begin{aligned} & \underset{\sim}{J} \\ & \dot{g} \end{aligned}$	$\begin{gathered} \underset{\sim}{\circ} \\ \ddot{\circ} \end{gathered}$	$\begin{aligned} & \underset{\sim}{8} \\ & \ddot{8} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \ddot{\square} \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\sim}{\mathbf{O}} \end{aligned}$		$\stackrel{\stackrel{O}{7}}{\underset{\sim}{7}}$	$\stackrel{\tilde{n}}{\rightrightarrows}$	$\underset{\underset{\sim}{7}}{\underset{\sim}{7}}$	$\stackrel{\circ}{\underset{\sim}{ت}}$	$\stackrel{\sim}{\sim}$
$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & n \\ & \mathfrak{n} \\ & \text { j } \\ & \text { n } \end{aligned}$	－	$=$	$=$	$=$	$=$	$=$	$=$	$$	$=$	$\sim$	$=$	$=$	$=$	＝	$=$	$=$	$=$	$=$	＝
刲	$\begin{aligned} & \dot{0} \\ & \dot{\sim} \\ & \ddot{\sim} \\ & \ddot{i} \end{aligned}$	－		$=$		$=$	$=$	$=$	$\begin{aligned} & \stackrel{\vdots}{0} \\ & \dot{O} \\ & \stackrel{\rightharpoonup}{\dot{~}} \end{aligned}$	$=$	$=$	$=$	$=$	$=$	$\begin{aligned} & \dot{O} \\ & \underset{\sim}{\circ} \\ & \stackrel{\rightharpoonup}{J} \end{aligned}$	：	$=$		＝	：
$\begin{gathered} 0 \\ \stackrel{0}{3} \\ \stackrel{3}{3} \\ \vdots \end{gathered}$	$\begin{aligned} & \dot{0} \\ & \dot{\sim} \\ & \dot{\circ} \end{aligned}$	$=$	$\circ$ $\dot{\circ}$ $\dot{\circ}$ $\vdots$	：	＝	＝	$=$	$=$	$\begin{aligned} & \tilde{n} \\ & \dot{\sim} \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$	$=$	$=$	$=$	$=$		$\begin{aligned} & \dot{0} \\ & \dot{\circ} \\ & \dot{\circ} \\ & \dot{\circ} \end{aligned}$	$=$	$=$	$=$	＝	$=$
	$\begin{aligned} & \text { Q } \\ & \text { in } \\ & \text { in } \end{aligned}$	＝	：	：	＝	：	＝	＝	華	$=$	$=$	$=$	$=$	：	$=$	：	：	$=$	＊	：
	$\stackrel{\circ}{\circ}$	$\stackrel{\text { ®}}{ }$	$\stackrel{\text { ® }}{\sim}$	$\stackrel{\text { g }}{\text { ¢ }}$	$\stackrel{\text { 알 }}{ }$	$\vec{\sim}$	$\underset{\sim}{\sim}$	$\stackrel{m}{\sim}$	$\stackrel{\text { N}}{\text { N}}$	$\stackrel{\infty}{\text { ¢ }}$	$\stackrel{\text { ² }}{ }$	$\stackrel{\circ}{\text { ¢ }}$	$\stackrel{-1}{n}$	N	$\stackrel{\square}{\text { r }}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	N	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{n}$
总	$\stackrel{\sim}{\sim}$		$\mathfrak{\sim}$						$\stackrel{\infty}{\sim}$						$\stackrel{\sim}{\sim}$					












$\left.\begin{array}{\|l\|l}  \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$				$$												$\begin{aligned} & \frac{7}{4} \\ & \frac{0}{8} \\ & \frac{8}{8} \\ & \frac{88}{8} \end{aligned}$	
	$\stackrel{\bigcirc}{-}$	$=$	0	，	$\stackrel{\circ}{i}$	：	$=$		$\stackrel{n}{0}$	1	$\stackrel{\circ}{-}$	$=$	$=$		$\because$	；	$\stackrel{\circ}{-}$
				吕						廌						怱	
	8   8   ¢	$\stackrel{\circ}{\circ}$	$\stackrel{\substack{\text { ¢ } \\ \text { j }}}{\substack{\text { d }}}$	＋	$\circ$ $\stackrel{\text { a }}{ }$ $\sim$	－	8	$\stackrel{8}{\circ}$	$\stackrel{\stackrel{8}{\text { i }}}{ }$	1	－	$\stackrel{\circ}{\square}$	－	$\stackrel{8}{8}$	$\stackrel{8}{0}$	1	$\stackrel{\circ}{\circ}$
	${ }^{\text {m }}$	＊	－	$=$	$\stackrel{\sim}{\sim}$	：	＝	＝	＝	：	J	＝	＝		：	－	コ
$\begin{aligned} & 9 \\ & \frac{9}{2} \\ & \frac{0}{9} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\tilde{\sim}} \\ & \underset{\sim}{\tilde{\sim}} \end{aligned}$	$\underset{\underset{\sim}{*}}{\underset{\sim}{2}}$	$\begin{aligned} & \stackrel{n}{\tilde{n}} \end{aligned}$	$\begin{aligned} & \stackrel{\otimes}{\ddot{\sim}} \\ & \stackrel{\sim}{\tilde{\prime}} \end{aligned}$	－	$\underset{\underset{\sim}{*}}{\substack{2}}$	$\stackrel{o}{\underset{\sim}{\tilde{n}}}$	華	$\stackrel{\approx}{\ddot{\circ}}$	$\begin{aligned} & \hat{m} \\ & \stackrel{1}{\circ} \end{aligned}$	$\stackrel{n}{7}$	$\underset{\underset{\sim}{*}}{\underset{\sim}{2}}$	$\stackrel{9}{\square}$			$\stackrel{\underset{\sim}{\tilde{y}}}{ }$	$\stackrel{n}{\tilde{\circ}}$
8180	$\begin{aligned} & n \\ & 5 \\ & 5 \\ & 5 \\ & n \end{aligned} .$	：			:				$\begin{aligned} & \approx \\ & n \\ & 5 \\ & \underset{\sim}{n} \end{aligned}$			$=$	$=$	＝	$=$		
第		$=$	$=$	：	$\begin{aligned} & \stackrel{\circ}{\dot{o}} \\ & \dot{\circ} \\ & \stackrel{\rightharpoonup}{\mathrm{I}} \end{aligned}$	$=$	$=$	$=$	$=$	$=$	$\begin{aligned} & \dot{\circ} \\ & \dot{O} \\ & \dot{O} \\ & \dot{丸} \end{aligned}$	:	$=$	＊	：		$\begin{aligned} & \text { in } \\ & \stackrel{0}{\circ} \\ & \stackrel{\rightharpoonup}{d} \end{aligned}$
\％		$=$	:		$\begin{aligned} & \dot{\square} \\ & \stackrel{\rightharpoonup}{\square} \end{aligned}$				$=$	$=$	$\begin{aligned} & \dot{\circ} \\ & \dot{\mathrm{I}} \\ & \dot{\circ} \end{aligned}$		＊		＊	:	$\begin{aligned} & \dot{n} \\ & \underset{\sim}{8} \\ & \stackrel{0}{8} \end{aligned}$
$\stackrel{0}{\vec{d}} \dot{d}$	$\begin{aligned} & \text { 若 } \\ & \text { B } \end{aligned}$		$=$		，	－	：	．	$=$	．	－	－	：	－		，	
	\％\％	\％	ू̆	\％	¢	\％	\％	$\stackrel{\circ}{\square}$	$\stackrel{\square}{\square}$	\％	$\stackrel{\text { O }}{\text { O }}$	$\stackrel{\text { ® }}{\sim}$	$\stackrel{\circ}{-}$	$\stackrel{\text { 익 }}{ }$	$\stackrel{\text { ®．}}{\sim}$	$\stackrel{\square}{\square}$	$\underset{\sim}{7}$
	$\stackrel{\square}{\square}$				$\stackrel{\text { ¢ }}{ }$						$\stackrel{\text { ® }}{ }$						ٌ



	.					$\begin{aligned} & \overrightarrow{0} \\ & \stackrel{0}{8} \\ & \frac{8}{8} \end{aligned}$						$\begin{aligned} & \stackrel{0}{7} \\ & \underset{3}{3} \\ & \stackrel{0}{8} \\ & 0 \end{aligned}$						$\begin{aligned} & 7 \\ & 0 \\ & 0 \\ & \substack{8 \\ 8 \\ 8 \\ 0 \\ \hline} \end{aligned}$	
笛	$\stackrel{\square}{\square}$	$=$	$=$	=		i	$\stackrel{\bigcirc}{-}$	z	$=$	$=$		1	$\stackrel{\square}{-}$	$=$	$=$	$=$	$\because$	1	$\stackrel{\bigcirc}{-}$
												0 © ©						$\stackrel{\square}{\square}$	
$\begin{aligned} & 8 \\ & \frac{5}{8} \\ & \frac{1}{8} \\ & 8 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 0 \end{aligned}$	$\stackrel{8}{8}$	-	8	8	1	8	8	-	\%	80	i	-8	8	$\stackrel{8}{\text { ¢ }}$	-	$\stackrel{\mathrm{O}}{\mathrm{O}}$	;	8 8 0
$\begin{aligned} & 5 \\ & 8 \end{aligned}$	$\stackrel{0}{\circ}$	2	:	:	$=$	=	$\pm$	:	$=$	$=$	=	=	$=$	$=$	=	=	=	-	$\cdots$
	$\begin{gathered} \stackrel{\circ}{8} \\ \stackrel{\text { B }}{2} \end{gathered}$	$\frac{\vec{F}}{8}$	$\stackrel{?}{\%}$	$\begin{aligned} & \stackrel{\circ}{4} \\ & \hline 8 \end{aligned}$	$\underset{8}{\sim}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	7   7   8	$\frac{9}{\square}$	$\begin{aligned} & \underset{\sim}{8} \\ & \ddot{8} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\ddot{\circ}} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Ï } \\ & \text { gig } \end{aligned}$	$\begin{aligned} & \stackrel{0}{8} \\ & \ddot{8} \end{aligned}$	$\begin{gathered} \approx \\ \approx \\ \hline \end{gathered}$	$\begin{aligned} & \text { a } \\ & \text { a } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & 0 \end{aligned}$	9   -9		$\stackrel{8}{0}$
$8$	$\begin{aligned} & n \\ & 5 \\ & 5 \\ & 5 \\ & 0 \end{aligned}$	.	-	:	:	:	-	:	-	.	.		,	-	:				
$\begin{aligned} & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \dot{8} \\ & \stackrel{\rightharpoonup}{*} \\ & \underset{\sim}{2} \end{aligned}$	=	:	=	=	:		=	=	3	$=$	:	$\begin{aligned} & 0 \\ & \stackrel{0}{\circ} \\ & \stackrel{1}{\circ} \\ & \stackrel{-}{\top} \end{aligned}$	:	$=$	:	:	=	$\begin{aligned} & i \\ & i \\ & i \\ & i \\ & i \end{aligned}$
81803	$\begin{aligned} & \dot{\sim} \\ & \underset{\sim}{i} \\ & \stackrel{0}{0} \end{aligned}$	:	:	-	:	:	$\begin{aligned} & i \\ & i \\ & \vdots \\ & \dot{0} \end{aligned}$	:	:	:	:	-	$\begin{aligned} & \dot{\vdots} \\ & \dot{\vdots} \\ & \dot{\circ} \end{aligned}$	:	\%	a	:	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
	$\begin{aligned} & \text { y } \\ & \text { on } \\ & \text { in } \end{aligned}$	:	:	:	:	=	:	:	3	:	:	:	:	3	:	:	=	=	:
$x_{i}{ }_{5}^{9}$	$\begin{aligned} & \text { O} \\ & \underset{\sim}{0} \end{aligned}$	융	$\underset{\sim}{\mathrm{E}}$	İ	$\stackrel{M}{\mathbf{N}}$	$\underset{\sim}{\circ}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\underset{\sim}{\circ}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$	$\stackrel{g}{0}$	응	$\begin{aligned} & \text { N̈ } \\ & \text { O } \end{aligned}$	$\underset{\sim}{n}$	+	$\underset{\sim}{n}$	응	$\stackrel{N}{0}$	$\xrightarrow{\circ}$	8
	-						$\underset{\sim}{0}$						$\stackrel{\sim}{\sim}$						$\stackrel{\sim}{\sim}$




























$\begin{aligned} & \text { gid } \\ & \text { fi } \end{aligned}$							－											析
	$\stackrel{n}{0}$	；	$\stackrel{\bigcirc}{i}$	＝＝		$\stackrel{\sim}{\circ}$		$\stackrel{\circ}{-}$	$=$			$\stackrel{\sim}{\square}$		$\stackrel{\circ}{-}$	－		＊	1
		\％					\％											吕
	$\stackrel{8}{8}$	1	$\stackrel{+}{\square}$	$\begin{aligned} & 8 \\ & \stackrel{8}{4} \\ & \stackrel{8}{4} \\ & \text { in } \end{aligned}$	\％	$\stackrel{\circ}{\circ}$	i	$\stackrel{8}{8}$	$\stackrel{\stackrel{\circ}{\sim}}{\sim}$	$\stackrel{\substack{0 \\ \infty \\ \infty}}{\substack{2 \\ \hline}}$	$\underset{\substack{\mathrm{O} \\ \hline}}{ }$	$\stackrel{\substack{\circ \\ \vdots \\ \hline}}{ }$		$\stackrel{8}{8}$	$\stackrel{\circ}{\text { on }}$	呂	$\stackrel{8}{8}$	\％
${ }_{8}^{8}$	\％	－	ค	－＝	－	－		－	：	：	：	＊		－	－	－	－	
$\therefore \frac{8}{4}$	$\stackrel{\text { ® }}{\#}$	$\begin{aligned} & \stackrel{\AA}{7} \\ & \hline 0 \end{aligned}$	$\stackrel{y}{*}$		8	$\begin{aligned} & \stackrel{n}{\ddot{O}} \end{aligned}$	－	$\stackrel{\text { ® }}{\text { ®̈ }}$	$\stackrel{n}{\sim}$	\％			\％	$\stackrel{\text { ̃̈ }}{\stackrel{1}{0}}$	$\stackrel{8}{0}$	$\stackrel{9}{\tilde{\circ}}$	च	$\stackrel{\text { n }}{\sim}$
－	$$							-	，									
8 8 8 8		．		－		：		－	，	：					－		－	．
娄	\％	．	¢ $\stackrel{1}{1}$ $\stackrel{1}{1}$	-		－		－0．	．	．				$\begin{aligned} & \text { in } \\ & \stackrel{1}{7} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	－		－	－
$\frac{8}{8}$	烒			－$\cdot$		－		－	，	－	－			，			．	．
		\％	亳	䍖	$\stackrel{\text { \％}}{\sim}$	囬		$\stackrel{\text { \％}}{\sim}$	召	咢	\％			先			\％	$\stackrel{8}{\sim}$
	${ }_{6}^{\prime}$		\％					9						ت				




















$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$		$\begin{aligned} & \text { ت} \\ & \stackrel{0}{8} \\ & \stackrel{8}{8} \\ & \hline 0 \end{aligned}$				7 8 8 8 8 8											
	$\stackrel{\circ}{-}=\stackrel{n}{\circ}$	1 －	：＝	－	$\stackrel{n}{0}$	＇	$\stackrel{\square}{i}$	．	－		n			$\stackrel{1}{1}$			－${ }_{0}^{0}$
		ª				皆											
	¢	1	¢	$\stackrel{8}{i}$	¢	i	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\stackrel{\circ}{+}}$	$\stackrel{+}{+}$	$\stackrel{8}{8}$	$\stackrel{\sim}{\sim}$			$\begin{gathered} \stackrel{8}{\mathrm{~N}} \\ \stackrel{y}{\circ} \end{gathered}$	$\frac{8}{i n}$	8	$\frac{8}{6} \frac{8}{5}$
	ก．－	－${ }_{\text {¢ }}$	－	－	－	，	－	－	－	－	－			โ	－	－	－－
$\frac{8}{2} \frac{8}{2}$				$\underset{\sim}{\text { ®in }}$	$\stackrel{\text { N }}{\stackrel{\rightharpoonup}{j}}$	$\frac{\%}{i}$		$\stackrel{\text { \％}}{\text { \％}}$	\％	$\frac{8}{8}$	$\frac{5}{8}$			$\stackrel{\text { ® }}{\hat{\Delta}}$	$\stackrel{\sim}{\square}$		$\begin{array}{ll} \mathscr{\circ} \\ \stackrel{8}{8} & 8 \\ 88 \end{array}$
8							:				－						
\＃ d ¢	－	－ $\begin{aligned} & \dot{j} \\ & \vdots \\ & \vdots \\ & \dot{j}\end{aligned}$	$\cdots \cdot$	：	，			．						$\begin{aligned} & \dot{\text { ® }} \\ & \stackrel{\rightharpoonup}{\dot{~}} \end{aligned}$	，	．	－$\cdot$
惖	宫．	$$	－	－	－	－	淢	，						－	－	．	－－
$\frac{8}{8}$	友:	．．	．	，	．	．	－	－	－	，				－		－	．－
耳 ${ }^{\text {\％}}$	号 厚 免	\％	亮 ${ }_{\text {¢ }}$	¢	\％	¢	ั๐	$\stackrel{L}{2}$	¢ీ	\％	\％			$\stackrel{\square}{\sim}$	～	\％	\％
$\underset{\substack{j \\ ⿻}}{\substack{\mathrm{~g}}}$	$\ddot{\sim}$	$\stackrel{\sim}{\sim}$					$\stackrel{\circ}{\text { ¢ }}$							E			



					$\begin{aligned} & \bar{\circ} \\ & \stackrel{0}{0} \\ & \stackrel{y}{0} \end{aligned}$						$\begin{array}{r}\overrightarrow{8} \\ \underset{8}{8} \\ \hline 8\end{array}$								
	$\stackrel{\bigcirc}{-}$	$=2$	＝	$\stackrel{n}{0}$	1	$\stackrel{\circ}{-}$	：	$=$	：	$\stackrel{\sim}{0}$	1	$\stackrel{\bigcirc}{i}$	$=$	＝	$=$	3			
					$\begin{aligned} & 0 \\ & \underset{n}{6} \\ & \hline \end{aligned}$						苐								
	$\begin{aligned} & \text { O} \\ & \stackrel{\sim}{0} \end{aligned}$	$\begin{array}{cl} 8 \\ \stackrel{8}{0} \\ \dot{n} \\ \dot{n} & 0 \end{array}$	$\begin{aligned} & \text { ò } \\ & \text { in } \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{y}{4} \\ & i \end{aligned}$	i	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \stackrel{8}{\circ} \\ & \hline \end{aligned}$	$\begin{gathered} \stackrel{2}{\hat{N}} \\ \substack{0 \\ \hline} \end{gathered}$	$\stackrel{8}{8}$	$\begin{aligned} & \circ \\ & \stackrel{\rightharpoonup}{~} \\ & \stackrel{y}{c} \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{0}{n} \\ & \end{aligned}$	1	$\stackrel{\stackrel{0}{0}}{\substack{0}}$	$\stackrel{\stackrel{\text { ® }}{\text {－}}}{\text {－}}$	$\stackrel{\stackrel{8}{\mathrm{~N}}}{\sim}$	\％	$\stackrel{\stackrel{8}{+}}{\infty}$			
5	$\stackrel{\sim}{\sim}$	：	：	：	：	$\stackrel{\sim}{\sim}$	＝	$=$	$=$	：	：	N	：	：	：	：			
	$\begin{aligned} & \stackrel{0}{7} \\ & \underset{\sim}{7} \end{aligned}$		$\begin{aligned} & \underset{\sim}{\prime} \\ & \underset{\sim}{\prime} \end{aligned}$	$\begin{gathered} n \\ \underset{\sim}{ت} \end{gathered}$	$\begin{aligned} & \stackrel{\infty}{\dddot{\sim}} \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\ddot{N}} \end{aligned}$	$\begin{gathered} \underset{\sim}{\ddot{N}} \\ \end{gathered}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & \stackrel{n}{\sim} \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{m}{0} \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{i}{\ddot{\sim}} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & \underline{O} \\ & \underset{\sim}{\sim} \end{aligned}$		$\stackrel{\sim}{\sim}$	
岁	$\begin{aligned} & \circ \\ & 5 \\ & 5 \\ & \end{aligned}$									：	：	＝	：	：	：				
	$i$ $\dot{0}$ $\dot{\sim}$ $\underset{\sim}{\circ}$	$=1$	：	：		$\circ$ $\stackrel{0}{\circ}$ $\stackrel{+}{\sim}$ $\sim$	：	：	：	：	：	$\begin{aligned} & \dot{\circ} \\ & \dot{\circ} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\sim}{\circ} \end{aligned}$	：	：					
梯	$n$ $\vdots$ 0 0 0	．		－	：	in	$:$	：	：		：	in	：	：		：			
		－	：	：	：	：	：	：	：	：	：	：	－	：	－	，			
	$\underset{\sim}{N}$	$\underset{\sim}{\infty} \underset{\underset{\sim}{\sim}}{\underset{\sim}{2}}$	$\stackrel{\circ}{7}$	$\underset{\sim}{\underset{\sim}{7}}$	$\underset{\sim}{\sim}$	$\stackrel{m}{\sim}$	$\stackrel{\square}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\underset{\sim}{\underset{\sim}{n}}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$	$\underset{\sim}{\underset{\sim}{2}}$	$\underset{\sim}{\underset{\sim}{*}}$	$\underset{\sim}{\text { N }}$	$\underset{\sim}{\underset{\sim}{x}}$		$\pm$	
	\＃					लِ						¢						\％	


	3	$\because$	1	$\stackrel{-}{-}$	：	$=$	$\sim$	1	－	：	：	：	$\stackrel{\sim}{ }$			$\bigcirc$	＝	$=$	，	$\stackrel{\sim}{0}$
			\％					$\stackrel{\square}{\square}$												
	$\underset{\substack{\underset{\sim}{\infty} \\ \hline}}{ }$	$\stackrel{\otimes}{\stackrel{+}{\sim}}$	1	$\begin{aligned} & \stackrel{8}{8} \\ & \stackrel{0}{-} \end{aligned}$	$\underset{\substack{8 \\ \stackrel{O}{2}}}{ }$	8      0   0	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	1	$\stackrel{\stackrel{\circ}{0}}{\stackrel{\rightharpoonup}{6}}$	－	$\stackrel{\stackrel{\circ}{\mathrm{N}}}{\sim}$	$\stackrel{8}{8}$	\％			\％	$\begin{aligned} & \circ \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	8	$\underset{\sim}{\stackrel{\circ}{\circ}}$	$\stackrel{8}{\square}$
畐白	$\stackrel{\sim}{\sim}$	：	：	$\stackrel{\text { ® }}{ }$	：	＝	＝	＝	$\stackrel{\sim}{\sim}$	：	＝	＝	$=$				：	：	：	：
宕告	$\begin{aligned} & \stackrel{\Gamma}{\ddot{M}} \\ & \stackrel{M}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\ddot{N}} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\ddot{N}} \\ & \underset{\sim}{*} \end{aligned}$	$\begin{aligned} & \text { m} \\ & \stackrel{O}{8} \end{aligned}$	$\begin{aligned} & \infty \\ & \ddot{8} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{8} \end{aligned}$	$\begin{aligned} & \stackrel{y}{4} \\ & \stackrel{2}{2} \end{aligned}$	$\begin{aligned} & \stackrel{a}{\dddot{8}} \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{2}{7} \\ & 88 \end{aligned}$	8	$\begin{aligned} & \ddot{0} \\ & \ddot{8} \end{aligned}$	$\begin{aligned} & 8 \\ & \vdots \\ & \hline- \end{aligned}$	$\begin{aligned} & \stackrel{\square}{\square} \\ & \stackrel{3}{\ddot{O}} \end{aligned}$				$\begin{aligned} & \stackrel{n}{7} \\ & \underset{0}{0} \end{aligned}$	$\begin{aligned} & \text { on } \\ & \underset{O}{7} \end{aligned}$	$\begin{aligned} & \stackrel{9}{\square} \\ & \underset{O}{7} \end{aligned}$	$\begin{aligned} & \stackrel{o}{4} \\ & \ddot{O} \end{aligned}$
㟧	2 5 5 $\sim$			$\begin{aligned} & \stackrel{\infty}{2} \\ & 5 \\ & 5 \\ & \infty \end{aligned}$	$=$								：				：		．	
		＝	$=$	$\dot{0}$ $\dot{0}$ $\dot{0}$ $\underset{\sim}{\sim}$	：	：	：	：	$\begin{aligned} & \dot{\infty} \\ & \dot{\infty} \\ & \dot{\Delta} \\ & \stackrel{\sim}{\Delta} \\ & \hline \end{aligned}$	：	：	：	＝		－		：		：	：
苞	$i$ $i$ $i$ $i$	：	－	$\begin{aligned} & \dot{8} \\ & \dot{\sim} \\ & \stackrel{1}{8} \\ & \stackrel{8}{2} \end{aligned}$	，	：			冎	，	：	：	：			－	：	－	－	－
$\ddot{H}_{\dot{L}}^{\dot{q}}$	\＄	，	：	－	－	－	：	－	：	：	－	：	－				，	－	：	－
$x_{i}^{x}$	$\stackrel{\infty}{\underset{~}{~}}$	$\stackrel{\theta}{i}$	$\stackrel{\S}{N}$	$\stackrel{\tilde{n}}{n}$	$\stackrel{\tilde{n}}{\underset{\sim}{n}}$	$\stackrel{\pi}{\pi}$	$\underset{\sim}{\tilde{n}}$	$\underset{\sim}{n}$	$\stackrel{n}{n}$	$\stackrel{\oplus}{\sim}$	$\stackrel{\Omega}{\underset{\sim}{n}}$	$\underset{\sim}{8}$	$\stackrel{\rightharpoonup}{\mathrm{a}}$			$\stackrel{\underset{\sim}{e}}{\underset{\sim}{2}}$	$\underset{\sim}{\underset{\sim}{\sim}}$	$\underset{\sim}{\underset{\sim}{n}}$	$\underset{\sim}{8}$	$\underset{\sim}{\oplus}$
	～			－												$\infty$				




Station No.	Cruise No.	Date	Depth   (m)	Start Tow			Finish Tow		
				Latitude N	Longitude W	Time	Latitude N	Longitude W	Time
919	C7504B	4/22/75	18	$46^{\circ} 09.8{ }^{\circ}$	$124^{\circ} 01.5^{\prime}$	0911	$46^{\circ} 08.2^{\prime}$	$124^{\circ} 00.2^{\prime}$	0940
920	"	"	18	$46^{\circ} 10.0^{\prime}$	$124^{\circ} 01.3^{\prime}$	1002	$46^{\circ} 08.3{ }^{\prime}$	$124^{\circ} 01.1^{\prime}$	1032
921	*	"	37	$46^{\circ} 11.8{ }^{\prime}$	$124^{\circ} 08.1^{\prime}$	1129	$46^{\circ} 10.7{ }^{\prime}$	$124^{\circ} \mathrm{n} 6.5^{\circ}$	1159
922*	"	$\cdots$	37	$46^{\circ} 11.7{ }^{\prime}$	$124^{\circ} 07.6^{\prime}$	1238	$46^{\circ} 10.4{ }^{\prime}$	$1.4 \%{ }^{1}$	1308
1151	C7506C	6/25/75	18	$46^{\circ} 12.2{ }^{\prime}$	$124^{\circ} 04.0^{\prime}$	1933	$46^{\circ} 11.3^{\prime}$	1.42 .9 ,	2003
1152	-	"	17	$46^{\circ} 12.3{ }^{\prime}$	$124^{\circ} 04.0^{\prime}$	2024	$46^{\circ} 11.4{ }^{\prime}$	1.: ${ }^{\text {. }} 3^{\text { }}$	2053
1153	"	*	20	$46^{\circ} 12.1{ }^{\prime}$	$124^{\circ} 05.3{ }^{\prime}$	2117	$46^{\circ} 11.1^{\prime}$	12.4 .3	2146
1154	*	"	9	$46^{\circ} 15.6{ }^{\prime}$	$124^{\circ} 06.8^{\prime}$	2242	$46^{\circ} 15.6^{\prime}$	1248.9 '	2310
1155	"	6/25-26/75	9	$46^{\circ} 15.6{ }^{\prime}$	$124^{\circ} 06.7{ }^{\circ}$	2340	$46^{\circ} 15.6{ }^{\prime}$	124 178.5	0010
1156	"	6/26/75	18	$46^{\circ} 14.4{ }^{\prime}$	$124^{\circ} 08.7$	0102	$46^{\circ} 13.3{ }^{\prime}$	124* 7. $^{\circ}$	0132
1157	"	"	28	$46^{\circ} 12.3{ }^{\prime}$	$124^{\circ} 07.0^{\prime}$	0220	$46^{\circ} 11.3^{\prime}$	$124^{\circ} 06.0^{\prime}$	0250
1158	*	$\cdots$	26	$46^{\circ} 12.0^{\prime}$	$124^{\circ} 06.3^{\prime}$	0330	$46^{\circ} 11.0^{\prime}$	$124^{\circ} 05.7^{\prime}$	0400
1159	"	"	37	$46^{\circ} 11.5^{\prime}$	$124^{\circ} 07.6^{\prime}$	0443	$46^{\circ} 10.5^{\prime}$	$124^{\circ} 07.1^{\prime}$	0513
1160	*	"	37	$46^{\circ} 11.7{ }^{\prime}$	$124^{\circ} 08.2^{\prime}$	0556	$46^{\circ} 10.8^{\prime}$	$124^{\circ} 07.5^{\prime}$	0626
1161	*	"	40	$46^{\circ} 09.5^{\prime}$	$124^{\circ} 06.3^{\prime}$	0659	$46^{\circ} 08.6^{\prime}$	$124^{\circ} 06.2^{\prime}$	0730


Table C-IB (continued)									
No.	No.	Date	(m)	Latitude N	Longitude W	Time	$\overline{\text { Latitude }} \mathbf{N}$	Longitude W	Time
1162	C7506C	6/26/75	40	$46^{\circ} 09.5^{\prime}$	$124^{\circ} 06.9^{\prime}$	0823	$46^{\circ} 08.7^{\prime}$	$124^{\circ} 06.1^{\prime}$	0848
1163	*	.	59	$46^{\circ} 09.5^{\prime}$	$124^{\circ} 09.9^{\prime}$	0924	$46^{\circ} 08.7{ }^{\prime}$	$124 \text { O9. } 2^{\prime}$	0954
1164	"	*	58	$46^{\circ} 09.71$	$124^{\circ} 10.0^{\prime}$	1020	$46^{\circ} 08.8^{\prime}$	12409.2'	1050
1165	"	*	80	$46^{\circ} 09.6^{\prime}$	$124^{\circ} 13.3^{\prime}$	1128	$46^{\circ} 08.8^{\prime}$	$124^{\circ} 12.5{ }^{\prime}$	1158
1166	*	"	80	$46^{\circ} 09.6^{\prime}$	$124^{\circ} 13.2^{\prime}$	1244	$46^{\circ} 08.8^{\prime}$	$124^{\circ} 12.4{ }^{\prime}$	1314
1167	*	"	22	$46^{\circ} 14.5{ }^{\prime}$	$124^{\circ} \mathrm{C} 9.7^{\prime}$	1417	$44^{\circ} 13.8{ }^{\prime}$	$124^{\circ} 09.4^{\prime}$	1447
1168	*	"	37	$46^{\circ} 13.7 \prime$	$124^{\circ} 10.4^{\prime}$	1630	$45^{\circ} 12.71$	$124^{\circ} 10.1^{\prime}$	1700
1169	"	"	35	$46^{\circ} 09.5^{\prime}$	$124^{\circ} 04.9^{\prime}$	1752	$45^{\circ} 08.3^{\prime}$	$124^{\circ} 03.9^{\prime}$	1822
1170	n	"	35	$46^{\circ} 09.5^{\prime}$	$124^{\circ} 04.7{ }^{\prime}$	1845	$46^{\circ} 08.6^{\prime}$	$124^{\circ} 04.2^{\prime}$	1915
1171	-	*	17	$46^{\circ} 10.1{ }^{\prime}$	$124^{\circ} 01.0^{\prime}$	1945	$46^{\circ} 08.8^{\prime}$	$124^{\circ} 00.4^{\prime}$	2015
1172	"	*	17	$46^{\circ} 10.1{ }^{\prime}$	$124^{\circ} 01.3^{\prime}$	2039	$46^{\circ} 08.8^{\prime}$	$124^{\circ} 00.2^{\prime}$	2109
1524	C7509E	9/14/75	27	$46^{\circ} 11.8^{\prime}$	$124^{\circ} 06.7^{\prime}$	1522	$46^{\circ} 10.8^{\prime}$	$124^{\circ} 05.2^{\prime}$	1552
1525	*	${ }^{*}$	29	$46^{\circ} 10.4{ }^{\prime}$	$124^{\circ} 05.3^{\prime}$	1611	$46^{\circ} 11.4{ }^{\prime}$	$124^{\circ} \mathrm{CK} .2^{\prime}$	1641
1526	*	*	26	46*11.4'	$124{ }^{\circ} 05.3$ '	1658	$46^{\circ} 10.4{ }^{\prime}$	$124^{\circ} 03.8{ }^{\prime}$	1728
1527	"	*	22	$46^{\circ} 11.0^{\prime}$	124*04.1'	1747	$46^{\circ} 11.7 \prime$	$124^{\circ} 05.2^{\prime}$	1817


Station No.	Cruise No.	Date	Depth   (m)	Table C-IB (continued)Start Tow			Finish Tow		
				Latitude N	Longitude W	Time	Latitude N	Longitude W	Time
1528	C7509E	9/14/75	20	$46^{\circ} 12.2{ }^{\prime}$	$124^{\circ} 05.2^{\prime}$	1839	$46^{\circ} 10.9{ }^{\prime}$	$124^{\circ} 04.1{ }^{\prime}$	1909
1529	"	"	20	$46^{\circ} 10.7{ }^{\prime}$	$124^{\circ} 02.5^{\prime}$	1935	$46^{\circ} 11.7^{\prime}$	$124^{\circ} 04.1{ }^{\prime}$	2005
1530	"	"	18	$46^{\circ} 12.1{ }^{\prime}$	$124^{\circ} 04.0^{\prime}$	2024	$46^{\circ} 11.0^{\prime}$	$124^{\circ} 03.0^{\prime}$	2054
1531	-	"	19	$46^{\circ} 09.71$	$124^{\circ} 00.9^{\prime}$	2130	$46^{\circ} 08.0^{\prime}$	$123^{\circ} 59.8^{\prime}$	2200
1532	"	"	19	$46^{\circ} 08.1{ }^{\prime}$	$123^{\circ} 59.9{ }^{\prime}$	2214	$46^{\circ} 09.1^{\prime}$	$124^{\circ} 00.8^{\prime}$	2244
1533	"	n	34	$46^{\circ} 09.5^{\prime}$	$124^{\circ} 05.0^{\prime}$	2327	$46^{\circ} 07.8^{\prime}$	$124^{\circ} 04.0^{\prime}$	2357
1534	"	-15/75	36	$46^{\circ} 08.0^{\prime}$	$124^{\circ} 03.8^{\prime}$	0017	$46^{\circ} 09.0^{\prime}$	$124^{\circ} 05.0^{\prime}$	0047
1535	"	n	44	$46^{\circ} 09.4{ }^{\prime}$	$124^{\circ} 07.2^{\prime}$	0118	$46^{\circ} 07.9^{\prime}$	$124^{\circ} 06.2^{\prime}$	0148
1536	*	*	48	$46^{\circ} 08.1{ }^{\prime}$	$124^{\circ} 06.2^{\prime}$	0207	$46^{\circ} 09.3{ }^{\prime}$	$124^{\circ} 06.7^{\prime}$	0237
1537	"	*	56	$46^{\circ} 09.3{ }^{\prime}$	$124^{\circ} 08.8^{\prime}$	0307	$46^{\circ} 08.0{ }^{\prime}$	$124^{\circ} 08.4^{\prime}$	0337
1538	"	"	62	$46^{\circ} 08.2^{\prime}$	$124^{\circ} 08.4{ }^{\prime}$	0400	$46^{\circ} 09.3{ }^{\prime}$	$124^{\circ} 09.5^{\prime}$	0430
1539	"	"	82	$46^{\circ} 09.2^{\prime}$	$124^{\circ} 13.0^{\prime}$	0510	$46^{\circ} 08.1^{\prime}$	$124^{\circ} 12.0^{\prime}$	0540
1540	-	*	82	$46^{\circ} 08.2^{\prime}$	$124^{\circ} 12.5{ }^{\prime}$	0620	$46^{\circ} 10.0^{\prime}$	$124^{\circ} 13.6^{\prime}$	0650
1541	$\cdots$	"	37	$46^{\circ} 11.4^{\prime}$	$124^{\circ} 07.6^{\prime}$	0740	$46^{\circ} 10.2^{\prime}$	$124^{\circ} 06.8^{\prime}$	0810
1542	*	*	37	$46^{\circ} 10.5^{\prime}$	$124^{\circ} 06 .{ }^{\circ}$	0825	$46^{\circ} 11.7{ }^{\prime}$	$124^{\circ} 07.8^{\prime}$	0855



Alphabetical Species List
Species (MCR Code) DMRP Code
Abarenicola sp. \#1 (219) ..... 40348
Acanthomysis alaskensis? (537) ..... 40416
Acanthomysis davisi (114) ..... 23879
Acanthomysis macropsis (113) ..... 23856
Acanthomysis nephrothalma (115) ..... 23880
Acanthomysis spp. (119) ..... 23874
Accedomoera sp. \#1 (187) ..... 40475
Acila castrensis (19) ..... 21931
Acteocina? sp. \#1 (518) ..... 40370
Adontorhina cyclia (26) ..... 40083
Aedicira sp. \#1 (392) ..... 40285
Aglaja diomedea (30) ..... 40146
Allorchestes sp. \#1 (490) ..... 24197
Ampelisca agassizi (123) ..... 24004
Ampelisca brevisimulata (125) ..... 40447
Ampelisca hancocki (122) ..... 24005
Ampelisca macrocephala (121) ..... 24006
Ampharete acutifrons (221) ..... 19710
Ampharete arctica (439) ..... 19713
Ampharete spp. (223) ..... 19709
Ampharetidae spp. (290) ..... 19700
Amphicteis sp. \#1 (452) ..... 40123

Table C-IIB (con	
Species (MCR Code)	DMRP Code
Amphiodia periercta-urtica complex (425)	40489
Amphiodia periercta (83)	17607
Amphiodia sp. \#1 (89)	17608
Amphiodia spp. (87)	17603
Amphiodia urtica (84)	17606
Amphioplus hexacanthus (93)	17613
Amphiura sp. \#d (90)	17618
Amphiuridae spp. (85)	17602
Anaitides groenlandica (323)	40292
Anaitides longipes (544)	40293
Anaitides mucosa (324)	40291
Anaitides sp. \#3 (383)	40300
Anaitides sp. \#4 (272)	40301
Anitides spp. (340)	19143
Anisogammarus confervicolus (488)	24607
Anisogamarus pugettensis (489)	24069
Anobothrus gracilis? (389)	19702
Anonyx adoxus (176)	40045
Anthozoa sp. \#1 (377)	40252
Anthozoa sp. \#2 (378)	40253
Anthozoa sp. \#3 (379)	40254
Anthozoa sp. \#4 (428)	40255
Anthozoa sp. \#5 (429)	40256
Anthozoa sp. \#6 (430)	40257

Species (MCR Code) DMRP Code
Anthozoa spp. (382) ..... 12000
Antinoella macrolepida? (395) ..... 40281
Aoridae sp. \#1 (168) ..... 40449
Aoroides columbiae (167) ..... 24029
Apistobranchus ornatus (225) ..... 40362
Arabella spp. (283) ..... 19382
Axabillidae sp. \#1 (455) ..... 40317
Arabellidaesp. \#3 (433) ..... 40318
Arabellidae sp. \#4 (270) ..... 40319
Arabellidae spp. (387) ..... 19380
Archeomysis grebnitzkii (110) ..... 23855
Archynchite pugettensis (74) ..... 25403
Arenicolidae spp. (386) ..... 19620
Argeia pugettensis (200) ..... 23929
Argeia spp. (505) ..... 40440
Argissa hamatipes (181) ..... 24245
Aricidea neosuecica (448) ..... 40094
Aricidea ramosa (226) ..... 19113
Aricidea sp. \#1 (227) ..... 19114
Aricidea spp. (355) ..... 19111
Armandia bioculata (228) ..... 19541
Armina californica (416) ..... 40375
Artacama coniferi (260) ..... 19722
Artacamella hancocki (229) ..... 40355
Species (MCR Code) DMRP Code
Asychis disparidentata (406) ..... 40336
Asychis sp. \#2 (457) ..... 40337
Asychis spp. (462) ..... 19566
Atylus tridens (154) ..... 24239
Autolytus cornutus (269) ..... 19212
Autolytus spp. (388) ..... 19202
Axinopsida serricata (24) ..... 22203
Balanus hesperius (201) ..... 23730
Barantolla americana (236) ..... 40351
Bathycopea daltonae (197) ..... 40427
Bathyleberis sp. \#l (194) ..... 40411
Bathymedon? sp. "1 (131) ..... 24134
Bathymedon? sp. \#2 (411) ..... 40460
Boccardia basilaria (289) ..... 40323
Bopyrella? sp. \#1 (404) ..... 23960
Brada pluribranchiata (470) ..... 40332
Brisaster latifrons (81) ..... 16108
Byblis sp. \#1 (410) ..... 40448
Byblis veleronis (126) ..... 40044
Callianassa californiensis (547) ..... 24614
Campylaspis rubromaculata (400) ..... 23907
Campylaspis sp. \#1 (106) ..... 23908
Species (MCR Code) DMRP Code
Campylaspis sp. \#2 (107) ..... 23909
Campylaspis sp. \#3 (108) ..... 23910
Campylaspis sp. \#4 (582) ..... 40422
Cancer gracilis? (216) ..... 24929
Cancer magister (217) ..... 24930
Cancer oregonensis (548) ..... 24931
Capitella capitata (232) ..... 19641
Capitella capitata oculata (233) ..... 19649
Capitella spp. (540) ..... 19654
Capitellidae sp. \#1 (346) ..... 40353
Capitellidae spp. (368) ..... 19640
Caprella mendax (581) ..... 40482
Caprella sp. \#1 (532) ..... 40481
Cardiomya oldroydi (42) ..... 22244
Chaetodermatidae 8p. \#1 (49) ..... 40407
Chaetodermatidae spp. (530) ..... 40408
Chaetopteridae spp. (403) ..... 19480
Chaetozone nr. berkeleyorum (239) ..... 40331
Chaetozone getosa (237) ..... 19515
Chone albocincta (481). ..... 40103
Chorilia longipes (549) ..... 24909
Cirratulidae spp. (240) ..... 19500
Collisella ?Igitalis? (521) ..... 40366
Colurostylis occidentalis (104) ..... 23906

Table C-IIB (continued)
Species (MCR Code) DMRP Code
Compsomyax subdiaphana (56) ..... 40041
Corophium brevis (492) ..... 24047
Corophium sp. \#1 (188) ..... 24056
Corophium sp. \#2 (535) ..... 40450
Corophium salmonis (230) ..... 24051
Corophium spinicorne (495) ..... 24053
Cossura nr. laeviseta (449) ..... 40290
Cossura spp. (262) ..... 19131
Crangon alaskensis elongata (203) ..... 24436
Crangon communis (550) ..... 24450
Crangon franciscorum (520) ..... 24439
Crangon munita (552) ..... 24440
Crangon sp. ${ }^{2} 1$ (553) ..... 24452
Crangon spp. (205) ..... 24446
Crangon stylirostris (204) ..... 24448
Crenella decussata (44) ..... 22041
Cumacea spp. (523) ..... 23889
Cyclocardia ventricosa (54) ..... 40086
Cylichna attonsa (1) ..... 21233
Cymothoidae spp. \#l (507) ..... 40446
Decamastus gracilis? (24:) ..... 40352
Dendraster excentricus (\&く) ..... 16107
Dentalium rectius (68) ..... 22732
Species (MCR Code) DMRP Code
Dentaliidae spp. (67) ..... 22726
Diastylis alaskensis (101) ..... 23903
Diastylis bidentata (100) ..... 23902
Diastylis parapinulosa (584) ..... 40418
Diastylis pellucida (586) ..... 40417
Diastylis umatillensis (9y) ..... 23901
Diastylis sp. \#1 (102) ..... 23904
Diastylopsis dawsoni (97) ..... 23899
Diastylopsis tenuis (98) ..... 23900
Doridacea sp. \#1 (18) ..... 40373
Dorvilleidae spp. (287) ..... 19400
Dulichia sp. \#1 (189) ..... 24251
Echiura sp. \#3 (421) ..... 40485
Echiura sp. \#4 (427) ..... 40486
Echiura sp. \#5 (533) ..... 40487
Echiurida spp. (423) ..... 25400
Echiurus echiurus alaskanus (73) ..... 25402
Edotea sublittoralis (500) ..... 40432
Eohaustorius brevicuspis (494) ..... 40451
Eohaustorius sencillus (155) ..... 24096
Eohaustorius washingtonianus (156) ..... 24097
Epitonium tinctum (16) ..... 40376
Eteono californica? (245) ..... 19137

> Table C-IlB (ountimed)
Species (MCR Code) DMRP Code
Eteone longa (307) ..... 19160
Eteone (Mysta) barbata (231) ..... 40296
Eteone sp. \#l (393) ..... 40294
Eteone sp. \#2 (224) ..... 40295
Eteone sp. \#5 (314) ..... 40297
Eteone sp. \#6 (244) ..... 40298
Eteone sp. \#7 (271) ..... 40299
Eteone spp. (246) ..... 19155
Eudorella pacifica (109) ..... 23914
Eudorellopsis longirostris (103) ..... 23905
Eulalia leavicornuta (587) ..... 40468
Eumida sanguinea (250) ..... 19149
Eumida spp. (285) ..... 40492
Eunoe sp. \#1 (372) ..... 40196
Euphausia pacifica (569) ..... 24360
Euphilomedes carcharodonta (193) ..... 23299
Euphilomedes producta (574) ..... 40412
Exogone lourei (478) ..... 40110
Exogone spp. (432) ..... 19217
Flabelligeridae spp. (251) ..... 19520
Gammaridea sp. \#2 (366) ..... 40476
Sastropoda sp. "1 (578) ..... 40365
Species (MCR Code) DMRP Code
Gastropoda spp. (34) ..... 21100
Gastropteron pacificum (bus) ..... 40369
Grattyana ciliata (545) ..... 40283
Glycera capitata (252) ..... 19263
Glycera convoluta (385) ..... 40311
Glycera sF. \#l (426) ..... 40312
Glycera spp. (253) ..... 19365
Glycinde picta (408) ..... 40149
Glycinde sp. \#2 (256) ..... 40313
Glycinde spp. (258) ..... 19284
Gnorimosphaeroma oregonensis (502) ..... 23921
Golfingia macginitiei (69) ..... 25352
Golfingia sp. \#1 (70) ..... 25353
Goniada maculata (259) ..... 19287
Goniadidae spp. (407) ..... 19280
Gorgonocephalus caryi (572) ..... 17615
Guernea? sp. \#l (413) ..... 40469
Haploscoloplos elongatus (261) ..... 19421
Harmothoe $n r$. lunulata (465) ..... 19027
Hemiarthrus abdominalis (506) ..... 40441
Hemilamprops californensis (96) ..... 23898
Hesionidae sp. "1 (414) ..... 40288
Hesionidae spp. (263) ..... 19120

## Table C-IIB (continued)

Species (MCR Code) DMRP Code
Hesionidae sp. \#2 (420) ..... 40289
Hesperonoe sp. \#l (466) ..... 40282
Hesiospina sp. *l (265) ..... 40286
Heteromastus filobranchus (264) ..... 19651
Heteromastus sp. \#1 (296) ..... 40350
Heteromastus spp. (394) ..... 19653
Heterophoxus oculatus? (152) ..... 24158
Hippomedon denticulatus (169) ..... 24123
Hippomedon sp. \#l (178) ..... 40453
Hippomedon wecomus (170) ..... 24124
Hirudinea spp. (543) ..... 20271
Huxleyia munita (59) ..... 21991
Hydrozoa spp. (367) ..... 11501
Hyperiidea sp. \#l (529)
Idotea fewksei (511) ..... 40433
Isaeidae sp. \#1 (527) ..... 40470
Ischyrocerus pelagops (162) ..... 24108
Isocirrus sp. \#1 (453) ..... 40338
Jassa? sp. \#1 (49.3) ..... 40452
Lamprops sp. \#1 (94) ..... 23916
Lamprops sp. \#2 (105) ..... 40420
Species (MCR Code) DMRP Code
Lanassa sp. \#1 (349) ..... 40358
Langerhansia heterochaeta (479) ..... 40305
Laonice cirrata (266) ..... 19442
Lepidasthenia berkeleyae (480) ..... 40100
Lepidasthenia longicirrata (474) ..... 40603
Lepidonotus sp. \#1 (268) ..... 19034
Leptognatha $n r$. longiremis (77) ..... 40042
Leucon sp. \#1 (528) ..... 40424
Limnoria lignorum? (503) ..... 23924
Listriella spp. (183) ..... 24119
Lucinoma annulata (55) ..... 40087
Luidia foliolata (570) ..... 40265
Lumbrineris bicirrata (329) ..... 19341
Lumbrineris latreilli (273) ..... 19349
Lumbrineris luti (275) ..... 19350
Lumbrineris cf. longensis (274) ..... 19359
Lumbrineris similabris (276) ..... 19351
Lumbrineris minima (454) ..... 40315
Lambrineris sp. (277) ..... 19347
Lumbrineris zonata (436) ..... 19345
Lyonsia californica (39) ..... 40390
Lyonsia inflata? (40) ..... 40391
Lyonsia sp. \#2 (41) ..... 22506
Lysianassidae sp. \#1 (177) ..... 40458
Species (MCR Code) DMRP Code
Lysianassidae sp. \#2 (585) ..... 40459
Lysianassidae spp. (371) ..... 24122
Macoma balthica? (391) ..... 22324
Macoma calcera (124) ..... 22322
Macoma carlottensis (32) ..... 22304
Macoma moesta alaskana (29) ..... 22302
Macoma nasuta (31) ..... 22323
Macoma elimata? (33) ..... 40386
Macoma sp. \#2 (164) ..... 22306
Macoma spp. (431) ..... 22326
Magelona longicornis (278) ..... 19467
Magelona pitelkai (280) ..... 40326
Magelona sacculata (279) ..... 40150
Megelona spp. (281) ..... 19463
Maldane sarsi (282) ..... 19562
Maldanidae sp. \#4 (286) ..... 40342
Maldanidae sp. \#14 (444) ..... 40343
Maldanidae sp. \#19 (299) ..... 40344
Maldanidae sp. \#20 (241) ..... 40345
Maldanidae sp. \#21 (247) ..... 40346
Maldanidae spp. (293) ..... 19560
Mandibulophoxus uncirostratus (153) ..... 24159
Species (MCR Code) DMRP Code
Mayerella banskia? (190) ..... 40479
Mediomastus californiensis (294) ..... 19643
Melinna spp. (396) ..... 19706
Melinna oculata (297) ..... 19708
Melita desdichada? (179) ..... 24084
Melita oregonensis (180) ..... 24086
Mesochaetopterus sp. \#1 (399) ..... 40327
Mesolamprops sp. \#1 (95) ..... 23897
Metopa sp. \#1 (184) ..... 40463
Metopa sp. \#2 (159) ..... 40464
Metopella sp. \#1 (517) ..... 40466
Misc.-unknown \#1 (362)
Misc.-unknown \#2 (363)
Misc.-unknown (364)
Misc.-unknown *4 (375)
Misc.-unknown 㙚5 (376)
Misc.-unknown \#6 (580)
Mitrella gouldii (2) ..... 21596
Molpadia intermedia? (79) ..... 16604
Monoculodes sp. \#1 (128) ..... 24137
Monoculodes sp. \#2 (129) ..... 24138
Monoculodes spinipes (127) ..... 24136
Monoculodes zernovi? (130) ..... 24141
Munida quadrispina (218) ..... 24626

## Tati. :-IIk (ッntinued)

Species (MCR Code) DMRP Code
Munispio cirrifera (335) ..... 40324
Musculus laevigata (28) ..... 22040
Musculus sp. \#1 (43) ..... 22039
Musculus sp. \#2 (75) ..... 40385
Myriochele heeri (437) ..... 19581
Myriochele oculata (300) ..... 40347
Myriochele spp. (483) ..... 19583
Mysella tumida (57) ..... 22574
Mysidacea spp. (120) ..... 23840
Mysini spp. (117) ..... 23881
Nassarius fossatus (3) ..... 21626
Nassarius mendicus (4) ..... 21627
Nassarius Spp. (5) ..... 21625
Nebalia bipes (76) ..... 40090
Nectocrangon alaskensis (bb4) ..... 24451
Nematoda spp. (192) ..... 14000
Nemertea sp. (4 (438) ..... 40267
Nemertea sp. 2 (446) ..... 40268
Nemertea sp. * (451) ..... 40269
Nemertea sp. (4) (456) ..... 40270
Nemertea sp. \#5 (460) ..... 40271
Nemertea sp. \% (463) ..... 40272
Nemertea sp. 7 (471) ..... 40273

Table C-IIB (continued)
Species (MCR Code) DMRP Code
Nemertea sp. \#8 (472) ..... 40274
Nemertea sp. \#9 (473) ..... 40275
Nemertea sp. 11 (475) ..... 40277
Nemertea sp. *12 (485) ..... 40278
Nemertea sp. (13) (510) ..... 40279
Nemertea sp. (14 (536) ..... 40280
Nemertea spp. (361) ..... 18700
Neoamphitrite robusta (267) ..... 40356
Neomenilda sp. 参 (534) ..... 40406
Neomysis franciscorum (111) ..... 23885
Neomysis kadiakensis (112) ..... 23865
Necmysis sp. 算 (116) ..... 23877
Neonysis sp. (118) ..... 23875
Nephtyidae spp. (295) ..... 19240
Nephytys caeca (301) ..... 19241
Nephtys caecoides (302) ..... 19242
Nephtys californiensis (303) ..... 19243
Nephtys cornuta (284) ..... 40308
Nephtys cornuta franciscanum (464) ..... 40309
Nephtys ferruginea (390) ..... 19244
Nephtys glabra (304) ..... 19251
Nephtys rickettsi (440) ..... 40310
Nephtys spp. (373) ..... 19247
Neptuneidae sp. (14) ..... 40379
Nereidae spp. (306) ..... 19220
Species (MCR Code) DMRP Code
Opheliidae spp. (342) ..... 19540
Ophelina acuminata (220) ..... 40334
Ophelina sp. (541) ..... 40335
Ophiodermella cancellata (15) ..... 40381
Ophiodermella sp. *1 (351) ..... 40382
Ophiomusium jolliensis (573) ..... 17616
Ophiura lutkeni (86) ..... 17610
Ophiura sarsii (91) ..... 17614
Ophiuxa spp. (92) ..... 17612
Ophiurida spp. (88) ..... 17611
Opisa tridentata (173) ..... 24126
Opistobranchia sp. 1 (234) ..... 40371
Opistobranchia sp. 2 (249) ..... 40372
Orbinia sp. (467) ..... 40092
Orbinildae spp. (315) ..... 19420
Orchomene pacifica (172) ..... 40454
Orchomene sp. 2 (486) ..... 40455
Orobitella rugifera (47) ..... 40393
Orenia collaris (316) ..... 40157
Orenildae spp. (397) ..... 19580
Pachynus barnardi? (174) ..... 24129
Pachynus chelatum? (171) ..... 40456
Paguridae spp. (214) ..... 24650
Species (MCR Code) DMRP Code
Nereis zonata (398) ..... 19231
Nereis? spp. (308) ..... 19232
Nicippe tumida (175) ..... 40457
Ninoe gemmea (309) ..... 19346
Nothria geophiliformis (311) ..... 40314
Nothria iridescens (310) ..... 19304
Nothria spp. (235) ..... 19306
Sotocirrus californiensis (238) ..... 40316
Notomastus hemipodus? (312) ..... 19644
Notomastus Iineatus (298) ..... 40349
Nucula tenuis (20) ..... 21933
Nuculana hamata (23) ..... 40384
Nuculanidae spp. (417) ..... 21960
Octopus sp. 11 (575) ..... 40409
Odostomia sp. 1 (6) ..... 21270
Odostomia spp. (539) ..... 21265
Oenoptota Eirrucula? (13) ..... 40380
Oligochaeta spp. (422) ..... 19900
Olivella baetica (7) ..... 21655
Olivella biplicata (8) ..... 21656
Olivella pycna (9) ..... 2i657
Olivella spp. (514) ..... 21654
Ophelia sp. (313) ..... 40151

## Table C-IIB (continued)

Species (MCR Code) DMRP Code
Paguristes turgidis (555) ..... 24654
Pagurus aleutieus? (556) ..... 40483
Pagurus armatus (212) ..... 24657
Pagurus caurinus (513) ..... 40484
Pagurus ochotensis (210) ..... 24671
Pagurus quayleyi (211) ..... 24672
Pagurus spp. (213) ..... 24678
Pananthura? sp. \#1 (504) ..... 40443
Pandalus danae (557) ..... 24417
Pandalus fordani (558) ..... 24420
Pandora bilirata? (53) ..... 22605
Pandora Eilosa (50) ..... 22603
Pandora grandis (51) ..... 22604
Pandora punctata (52) ..... 22609
Paracaudina chilensis (78) ..... 16601
Paranaitis polynoides (551) ..... 19153
Parandalia fauveli (435) ..... 40359
Paraonella playtbranchia (317) ..... 40154
Paronidae spp. (291) ..... 19110
Paraonis gracilis oculatus (442) ..... 40095
Paraphoxus abronius? (135) ..... 24146
Paraphoxus epistomus (137) ..... 24148
Paraphoxus fatigans (143) ..... 24163
Paraphoxus heterocuspidatus (138) ..... 24149

```
Table C-IIB (continued)
```

Species (MCR Code)DMRP Code
Paraphoxus 1ucubrans? (146) ..... 24150
Paraphoxus milleri (145) ..... 24151
Paraphoxus obtusidens (139) ..... 24152
Paraphoxus obtusidens major (140) ..... 24153
Paraphoxus sp. \#1 (147) ..... 24155
Paraphoxus sp. \#2 (148) ..... 24156
Paraphoxus sp. \#3 (149) ..... 24167
Paraphoxus sp. \#4 (150) ..... 40043
Paraphoxus sp. \#5 (362) ..... 40499
Paraphoxus spp. (151) ..... 24157
Paraphoxus stenodes? (144) ..... 24164
Paraphoxus tridentatus (48\%) ..... 40461
Paraphoxus variatus (142) ..... 24154
Paraphoxus vigitegus (141) ..... 24162
Parapleutes pugettensis (491) ..... 24173
Paraprionospio pinnata (337) ..... 19456
Paraseiloidea gp. \#1 (499) ..... 40444
Pardaliscella sp. \#l (186) ..... 40472
Pectinaria (Cistenides) granulata (319) ..... 40354
Pectinaria californiensis (320) ..... 19661
Pectinaria sp. \#1 (418) ..... 19664
Pectinaria spp. (321) ..... 19663
Pectinidae sp. \#l (577) ..... 40383
Pelecypoda sp. \#1 (60) ..... 40396

## Table C-IIB (continued)

Species (MCR Code) DMRP Code
Pelecypoda sp. \#2 (61) ..... 40397
Pelecypoda sp. \#3 (62) ..... 40398
Pelecypoda sp. \#4 (415) ..... 40399
Pelecypoda sp. \#7 (63) ..... 40400
Pelecypoda sp. \#9 (526) ..... 40401
Pelecypoda sp. \#10 (374) ..... 40402
Pelecyporia sp. \#11 (64) ..... 40403
Pelecypoda sp. *15 (66) ..... 40404
Pelecypoda sp. \#20 (519) ..... 40405
Pelecypoda sp. (45) ..... 21900
Pentamera sp. \#1 (80) ..... 16603
Pentidotea oculata (501) ..... 40434
Pherusa papillata (468) ..... 40333
Pholoe minuta (322) ..... 19601
Phoronis psammophila? (419) ..... 40488
Photis brevipes (157) ..... 24325
Photis californica? (160) ..... 24326
Photis lacia (158) ..... 24328
Photis spp. (161) ..... 24344
Phoxocephalus homilis (515) ..... 40462
Phylo felix (326) ..... 40321
Phyllodicidae sp. \#1 (248) ..... 40302
Phyllodicidae sp. \#2 (257) ..... 40303
Phyllodocidae spp. (325) ..... 19136
Species (MCR Code) DMRP Code
Pilargidae spp. (327) ..... 19860
Pilargis berkeleyae (434) ..... 40360
Pinnixa littoralis (542) ..... 24966
Pinnixa occidentalis (559) ..... 24967
Pinnixa sp. \#l (207) ..... 24961
Pinnixa sp. \#2 (208) ..... 24962
Pinnixa sp. \#3 (209) ..... 24963
Pinnixa spp. (215) ..... 24970
Pisaster brevispinus (5?1) ..... 40266
Pista cristata (328) ..... 19735
Pista moorei (330) ..... 19736
Pista spp. (441) ..... 19734
Pleurogonium rubicundum? (199) ..... 40437
Pleusymtes coquilla (182) ..... 24169
Podarkeopsis brevipalpa (459) ..... 40287
Polinices pallidus (17) ..... 21545
Polychaeta spp. (369) ..... 19001
Polycirrus spp. (331) ..... 19729
Polydora caulleryi (288) ..... 19445
Polydora sp. \#2 (292) ..... 40322
Polydora app. (332) ..... 19451
Polynoe sp. \#l (546) ..... 40284
Polynoidae spp. (333) ..... 19020
Praxillella affinis pacifica (445) ..... 40339
Species (MCR Code) DMRP Code
Praxillella gracilis (334) ..... 40340
Priapulus caudata (72) ..... 25454
Prionospio malmgreni (336) ..... 19457
Prionospio spp. (338) ..... 19459
Proboloides sp. \#1 (412) ..... 40465
Propeamussium davidsoni (579) ..... 40395
Protomedeia sp. \#l (163) ..... 24330
Protomedeia sp. \#2 (165) ..... 24331
Protomedeia zotea (166) ..... 24332
Psephidia lordi (58) ..... 40088
Pycnogonida sp. \#1 (381) ..... 40415
Rhachotropis oculata (402) ..... 40474
Rhodine bitorquata (339) ..... 40341
Rossia pacifica (576) ..... 22811
Rutiderma sp. 1 (424) ..... 40414
Sabellidae spp. (405) ..... 19740
Saduria entomon (508) ..... 40435
Scalibregma inflatum (409) ..... 19803
Schistomaringos annulata (458) ..... 40320
Sclerodoncha trituberculata (195) ..... 23301
Scolelepsis cirratulus (x孔i, ..... 40325
Scoloplos armiger (341) ..... 19427
Species (MCR Code) DMRP Code
Scoloplos spp. (305) ..... 19429
Sergestes similis (560) ..... 24462
Sigalionidae spp. (484) ..... 19055
Sigambra tentaculata (450) ..... 19867
Siligua patula (27) ..... 22351
Sipunculida spp. (71) ..... 25350
Sphaerodoropsis sphaerulifer (469) ..... 40104
Sphaerodoridae spp. (461) ..... 40105
Spio filicornis (343) ..... 40037
Spiochaetopterus costarum (352) ..... 40328
Spionidae spp. (370) ..... 19430
Spiophanes berkeleyorum (345) ..... 40155
Spiophanes bombyx (344) ..... 19453
Spirontocaris avina (561) ..... 24433
Spirontocaris barbata (562) ..... 40046
Spirontocaris cristata (564) ..... 24430
Exirontocaris gracilis (206) ..... 24432
Spirontocaris lamellicornis (565) ..... 40047
Spirontocaris pusiola? (567) ..... 40048
Spirontocaris suckleyi (568) ..... 40050
Spirontocaris spp. (583) ..... 40049
Stenothoe? sp. "1 (498) ..... 24182
Stenothoidae sp. \#1 (185) ..... 40467
Stenothoidae spp. (516) ..... 24178
Species (MCR Code) DMRP Code
Stenothoides angusta (588) ..... 40468
Sternaspis fossor (347) ..... 40116
Sthenelais tertiaglabra (348) ..... 19068
Syllidae spp. (350) ..... 19200
Synchelidium rectipalmumi (133) ..... 24142
Synchelidium shoemakeri (132) ..... 24139
Synidotea angulata (196) ..... 23925
Synidotea bicuspida (380) ..... 40429
Synidotea sp. \#2 (496) ..... 40430
Synidotea sp. *3 (497) ..... 40431
Tecticeps convexus (198) ..... 23933
Tellina carpenteri (37) ..... 22346
Tellina modesta (36) ..... 22307
Tealina sp. *5 (525) ..... 40387
Tellina spp. (38) ..... 22329
Tellinidae sp. \#1 (35) ..... 40388
Tellinidae sp. \#3 (48) ..... 40389
Tenonia kitsapensis (476) ..... 4usu2
Terebellidae spp. (353) ..... 19720
Terebellides stroemi (447) ..... 19731
Thalenessa spinosa (354) ..... 40118
Tharyx multifilis (358) ..... 40329
Tharyx sp. \#l (357) ..... 40119

## Table C-IIB (continued)

Species (MCR Codie) DMRP Code
Tharyx sp. \#3 (443) ..... 40330
Tharyx spp. (359) ..... 19510
Tharyx tesselata (356) ..... 19512
Thelepus setosus (318) ..... 40357
Thracia sp. \#l (65) ..... 40392
Thyasira flexuosa (25) ..... 22205
Thysanoessa spinifera (568) ..... 24374
Tomburchus? sp. \#1 (531) ..... 40394
Trachypollia? sp. \#1 (538) ..... 40377
Transennela tantilla? (46) ..... 40084
Travisia brevis (482) ..... 19546
Travisia gigas (360) ..... 19550
Tritella pilimana (191) ..... 24342
Trochochaeta franciscanum (243) ..... 40364
Turbellaria sp. \#1 (522) ..... 40258
Turbellaria spp. (365) ..... 14201
Turbonilla aurantia (10) ..... 21267
Turbonilla sp. *1 (11) ..... 21268
Turbonilla sp. \#2 (12) ..... 21269
Typosyllis alternata (477) ..... 40306
Typosyllis hyalina (254) ..... 40307
Typosyllis nr. hyalina (255) ..... 40491
Westwoodilla caecula (134) ..... 24140

Yoldia seminuda (21) 21968
Yoldia spp. (22) 21966
Numerical Species List

MCR Code	Species	DMRP   Code
1	Cylicha attonsa	21233
2	Mitrella gouldii	21596
3	Nassarius fossatus	21626
4	Nassarius mendicus	21627
5	Nassarius spp.	21625
6	Odostomia sp. \#1	21270
7	Olivella baetica	21655
8	Olivella biplicata	21656
9	Olivella pyena	21657
10	Turbonilla aura.ntia	21267
11	Turbonilla sp. \#l	21268
12	Turbonilla sp. \#2	21269
13	Oenopota turnicula?	40380
14	Neptuneidae sp. \#l	40379
15	Ophiodermella cancellata	40381
16	Epitonium tinctum	40376
17	Polinices pallidus	21545
18	Doridacea sp. ${ }^{\text {\# }}$	40373
19	Acilia castrensis	21931
20	Nucula tenuis	21933
21	Yoldia seminuda	21968
22	Yoldia spp.	21966

Table C-IIC (continued)

MCR   Code	Species	DRRP   Code
23	Nuculana hamata	40381
24	Axinopsid serricata	22203
25	Thyasira ilyxuosa	22205
26	Adontorhina cyclia	40083
27	Siligua patula	22351
28	Musculus laevigata	22040
29	Macoma moesta alaskana	22302
30	Aglaja dianedea	40146
31	Macoma nasuta	22323
32	Macoma carlottensis	22304
33	Macoma elimata?	40386
34	Gastropoda spp.	21100
35	Tellinidat sp. ${ }^{\text {\# }}$	40388
36	Tellina modesta	22307
37	Tellina carpenteri	22346
38	Tellina spp.	22329
39	Eyonsia californica	40390
40	Lyonsia inflata?	40391
41	Lyennsia sp. 2	22506
42	Cardiomya oldroydi	22621
43	Musculus sp. 1	22039
44	Crenella decussata	22041
45	Pelecypoda spp.	21900
46	Transennella tantilla?	40084

Table C-IIC (continued)

MCR   Code	Species	DMRP Code
47	Orobitella rugifera	40393
48	Tellinidae sp. \#3	40389
49	Chaetodermatidae sp. \#l	40407
50	Pandora filosa	22603
51	Pandora grandis	22604
52	Pandora punctata	22609
53	Pandora bilirata?	22605
54	Cyclocardia ventricosa	40086
55	Lucinoma annulata	40087
56	Compsomyax subdiaphana	40041
57	Mysella tumida	22574
58	Psephidia lordi	40088
59	Huxleyia munita	21991
60	Pelecypoda sp. \#l	40396
61	Pelecypoda sp. 2	40397
62	Pelecypoda sp. 3	40398
63	Pelecypoda Ep. 7	40400
64	Pelecypoda sp. 11	40403
65	Thracia sp. 1	40392
66	Polecypoda sp. 15	40404
67	Dentelilidae epp.	22726
68	Dentalium rectius	22732
69		23352
70	Col1ingia mp. 1	25353


MCR
Code $\quad$ Species $\quad$DRMP   Code

71
72
73
Sipunculida spp. 25350
Priapulus caudata 25454
Echiurus echiurus alaskanus 25402
Archynchite pugettensis 25403
Musculus sp. \#2 40385
Nebalia bipes 40090
Leptognatha nr. longiremis 40042
Paracaudina chilensis 16601
Molpadia intermedia? 16604
Pentamera sp. \#1 16603
Brisaster latifrons 16108
Dendraster excentricus 16107
Amphiodia periercta 17607
Amphiodia urtica 17606
Amphiuridae spp. 17602
Ophiura lutkeni 17610
Amphiodia spp. 17603
Ophiurida spp. 17611
Amphiodia sp. "1 17608
Amphiura sp. \#1 17618
Ophiura sarsi1 17614
Ophiura spp. 17612
Amphioplus hexacanthus 17613


Table C-IIC (continued)

MCR   Code	Species	$\begin{aligned} & \text { DMRP } \\ & \text { Code } \end{aligned}$
95	Mesolamprops sp. \#1	23897
96	Hemilamprops californensis	23898
97	Diastylopsis dawsoni	23899
98	Diastylopsis tenuis	23900
99	Diastylis umatillensis	23901
100	Diastylis bidentata	23902
101	Diastylis alaskensis	23903
102	Diastylis sp. \#l	23904
103	Eudorellopsis longirostris	23905
104	Colurostylis occidentalis	23906
105	Lamprops sp. \#2	40420
106	Campylaspis sp. \#l	23908
107	Campylaspis sp. \#2	23909
108	Campylaspis sp. \#3	23910
109	Eudorella pacifica	23914
110	Archeomysis grebnitakii	23855
111	Neomysis franciscorum	23885
112	Neomysis kadiakensis	23865
113	Acanthomysis macropsis	23856
114	Acanthonysis davisi	23879
115	Acanthomysis nephrothalma	23880
116	Neomysis sp. \#1	23877
117	Mysini spp.	23881
118	Neomysis spp.	23875

> Table C-IIC (continued)

MCR   Code	Species	DMRP   Code
119	Acanthomysis spp.	23874
120	Mysidacea spp.	23840
121	Ampelisca macrocephala	24006
122	Ampelisca hancocki	24005
123	Ampelisca agassizi	24004
124	Macoma calcarea	22322
125	Amiclisod brevisimulata	40447
126	Byblis veleronis	40044
127	Monoculodes spinipes	24136
128	Monoculodes sp. \%l	24137
129	Monoculodes sp. 2	24138
130	Monoculodes zernovi?	24141
131	Bathymedon? sp. 1	24134
132	Synchelidium shoemakeri	24139
133	Synchelidium rectipalmumi?	24142
134	Westwoodilla caecula	24140
135	Paraphoxus abronius?	24146
136	Paraphoxus ap. 5	40499
137	Paraphoxus epdstomus?	24148
138	Paraphoxus hetercuspldatus	24149
139	Paraphoxus obtuaidens	24152
140	Paraphoxus obtusidons major	24153
141	Paraphoxus vigitogus	24162
142	Paraphoxus variatun	24154

Table ( -1 IC (continued)

MCR   Code	Specios	$\begin{aligned} & \text { LMRP } \\ & \text { Code } \end{aligned}$
143	Paraphoxus fatigans	24163
144	Paraphoxu! stenodes?	24164
145	Paraphoxus milleri	24151
146	Paraphoxus 1ucubrans?	24250
147	Paraphoxus sp. 11	24155
148	Paraphoxus ap. 12	24156
249	Paraphoxus sp. 3	24167
250	Paraphoxus ap. 14	40043
151	Paraphoxus spp.	24157
152	Hecarophoxus	24158
153	Mancipulophoxus unclrostratus	24159
154	Atylus tridens	24239
155	Kohaustorius sencillus	24096
256	Eohaustorius washingtonianus	24097
157	Photis brevipes	24325
158	Photin lecia	24328
159	Metopa ep. 12	40464
160	Photis callfornica?	24326
161	Photie spp.	24324
262	Inchysucorum polagope	24100
163	Protemedela ep. 12	24330
164	Macoma ep. 12	22306
265	Protimmidele ap. 12	24332
166	Protomodela zotes	24332


MCR   Code	Species	$\begin{aligned} & \text { DMRP } \\ & \text { Code } \end{aligned}$
167	Aoroides columbiae?	24029
16H	Aoridae sp. 1	40449
169	Hipuomedor denticulatus	24123
170	Hopporacion wecullus	24124
271	Pachynus chelatur	40456
172	Orchomene paclifla	40454
173	Opisa tridentata	24126
174	Pachynus barnardi?	24129
175	Nicippe tumida	40457
176	Anonyx adoxus	40045
177	Lysianaseidae sp. 1	40458
178	Hippomodon Ep. 1	40453
179	Melita desdichada?	24084
180	Melita orogononsis	24086
181		24245
182	Plouspmes cogulila	24169
183	Listrielln mpp.	24119
184	Metopa sp. 11	40463
185	Stenothoidae ap. 1	40467
186	Pardaliscolla sp. 11	40472
187	Accedomoera mp. 1	40475
188	Coromium mr. l	24036
184	1unlichia mj. 1	24231
190	Mayerolla linuakial	40479

Table $\cdot-1 \mathrm{C}$ ( Cont anurad)

MCR

code		DMPP
	Species	Code

Tritella pilimana 24342

Nematoda spp. 14000
1\%)
194
295
196
197
198
199
200
201
202
203
204
205
206
207
208
209

210
211
212
213
214
$\because \quad . \quad 23299$
Bathyleberis sp. 1
40411
Sclerodoncha tribuberculata 23301

Synidotea angulata 23925

Bathycopea daltonae 40427

Tecticeps convexus 23933
Pleurogonlum rublcundum 40437
Argela pugottonsis 23929
Balanus hemperius 23730

Crabyun alavhunsif olongata 24436
Crangon stylirostris 24448
Crarıgon epp. 24446
Spirontocerle gracilis 24432
Pinnixa m. 1124961
Pinnixa $=p .124962$
Plnnlxa ய日. 3 24963
Payurus ochotonele 24671
Pagurun guayleyi 24672
Payurus armatum 24657
Pagurus mpp. 24678
Paguridae mpr. $246 \% 0$


MCR
Code
Suectes
DMKP
-_ Specte Code

Pinnixa spp. 24970

216
217
218
219
220
221
222
223
224
225
226
227
228

Cancer gracilis?
24929
Cancer magister 24930

Munida quadrispina 24626
Abarenicola sp. 1 ..... 40348
Ophelina acuminata ..... 40334
Ampha:t: wuy frons ..... 19710
Ampharete spp. ..... 19709
Etoone sp. 12 ..... 40295
Apistobranchus ornatus ..... 40362
Aricldea ramosa ..... 19113
Aricidea sp. 11 ..... 19114
Armandla bloculata ..... 19541
Artcamella hancock 1 ..... 40355
Corophlum salmonis ..... 24051
Etcone barbata ..... 40296
Capitella capitata ..... 19641
Capitalla capitata oculata ..... 19649
Oplstobranchla ap. il ..... 40371
Nothria spp. ..... 29306
Barantolla amertcana ..... 40351
'hantiotione nationa ..... 19513
:...........1.11.101018 ..... 10316


MCR   Code	Species	$\begin{aligned} & \text { DMRP } \\ & \text { Code } \end{aligned}$
239	Chaetozona nr. berkeleyorum	40331
240	Cirratulidae spp.	19500
241	Maldanidae sp. 20	40345
242	Decamastus gracilis?	40352
243	Trochachaeta franciscanum	40364
244	Eteone sp. 16	40298
245	Eteone californic. ?	19137
246	Eteone spp.	19155
247	Maldanidae sp. 21	40346
248	Phyllodocidae sp. 1	? 31302
249	Opistobranchia sp. 2	40372
250	Eumita sanguina	19149
251		19520
252	Glycera capitata	1:262
253	Glycera Epp.	19265
254	Typosyllis hyalina	40307
255	Dyposy111: $n$ r. hyalina	40491
256	Glycinde sp. 2	40313
257	Phyllodocldae sp. 12	40303
258	Glycinde spo.	19284
259	Conlada maculata	19287
260	Artacarm $\because$ H.tict	19722
26.	Haploscoloplus elongatus	19421
262	Consura mpp.	19131

MCR DMRP
CodeSpecies Code

263
$2 \in 4$

265

266Hesionidae spp.19120
Heteromastus filobranchus ..... 19651
Hesiospina sp. "l ..... 40286
Laonice cirrata ..... 19442
Neoamphitrite robusta ..... 40356
Lepidonotus sp. \#1 ..... 19034
 ..... 19212
Arabelildae sp. \#4 ..... 40319
Eteone sp. "7 ..... 40299
Anaitides sp. 4 ..... 40301
Lumbrineris latreilii ..... 19349
Lumbrineris cf. longensis ..... 19359
Lumbrineris luti ..... 19350
Lumbrineris similabris ..... 19351
Lumbrineris spp. ..... 19347
Magelona longicornis ..... 19467
Maythuna bacculata ..... 40150
Magelona pitelkai ..... 40326
Magelona spp. ..... 19463
Maldane sarsi ..... 19562
Arabolla Ep. ..... 19382
Nophtys cornuta ..... 40308
Eumida 日pp. ..... 40492
Maldanidae mp. 4 ..... 40342
MCR ..... DMRP
Code Species ..... Code
287 Dorvilleidae spp. ..... 19400288289290291292293294295296297298299300Polydora caulleryi19445
Boccardia basilaria ..... 40323
Ampharetidae spp. ..... 19700
Paraonidae spp. ..... 19110
Polydora sp. \#2 ..... 40322
Maldanidae spp. ..... 19560
Mediomostus californiensis ..... 19643
Nephtyidae spp. ..... 19240
Heteromastus sp. \#1 ..... 40350
Melinna oculata ..... 19708
Notomastus lineatus ..... 40349
Maldanidae sp. \#19 ..... 40344
Myriochele oculata ..... 40347
Nephtys caeca ..... 19241
Nephtys caecoldes ..... 19242
Nephtys californiensis ..... 19243
Nephtys glabra ..... 19251
Scoloplos spp. ..... 19429
Nereidae spp. ..... 19220
Eteone longa ..... 19160
Nereis spp. ..... 19232
Ninoe gemmea ..... 19346
Nothita 1r filescetas ..... 19304

Table C-IIC (continued)
MCR DMRP
Code Species ..... Code
311

Northia geophiliformis
40314312313314315316317318319320
Notomastus hemipodus? ..... 19644
Ophelia sp. \#1 ..... 40151
Eteone sp. \#5 ..... 40297
Orbiniidae spp. ..... 19420
Owenia collaris ..... 40157
Paraonella platybranchia ..... 40154
Thelepus setosus ..... 40357
Pectinaria granulata ..... 40354
Pectinaria californiensis ..... 19661
Pectinaria spp. ..... 19663
Pholoe minuta ..... 19061
Anaitides groenlandica ..... 40292
Anaitides mucosa ..... 40291
Phyllodocidae spp. ..... 19136
Phylo felix ..... 40321
pilaryidue :pp. ..... 19860
Pista cristata ..... 19735
Lumbrineris bicirrata ..... 19341
Pista morrel ..... 19736
Polycirrus spp. ..... 19729
Polydora spp . ..... 19451
Polynoidae spp. ..... 19020
Praxillella gracilis ..... 40340

Table C-IIC (continued)
MCR DMRP
Code Species Code336337
335

Munispio cirrifera 40324

Prionospio malmagreni 19457
Paraprionospio pinnata
19456
Prionsopio spp.
19459
Rhodine bitorquata 40341
Anaitides spp. 19143
Scoloplos armiger 19427
Opheliidae spp. 19540
Spio filicornis 40037
Spiophanes bombyx 19453
Spiophanes berkeleyorum 40155
Capitellidae sp. \#1 40353
Sternaspis fossor 40116
Sthenelais tertiaglabra 19068
Lanassa sp. 140358
Syllidae spp. 19200
Ophiodermella sp. \#1 40382
Spiochaetopterus costarum 40328
Terebellidae spp. 19720
Thalenessa spinosa 40118
Aricidea spp. 19111
Tharyx tesselata 19512
Tharyx sp. "1 40119
Tharyx multifilis 40329

Table C-lIC (continued)

MCR Code	Species	$\begin{aligned} & \text { DMRP } \\ & \text { Code } \end{aligned}$
359	Tharyx spp.	19510
360	Travisia gigas	19550
361	Nemertea spp.	18700
362	Miscellaneous 1	
363	Miscellaneous *2	
364	Miscellaneous *3	
365	Turbellaria spp.	14201
366	Gammaridea sp. 2	40476
367	Hydrozoa spp.	11501
368	Capitellidae spp.	19640
369	Polychaeta spp.	29001
370	Spionidae spp.	19430
372	Lysianassidae spp.	24122
372	Eunoe sp. 1	40196
373	Nephtys epp.	19247
374	Pelecypoda sp. 10	40402
375	Miscellaneous 4	
376	Miscellancous 5	
377	Anthozas - * 1	40252
378	Anthozoa sp. 2	40253
379	Anthoze ap. 3	40254
380	synidotea bicusplda	40429
381	Pyenogonide sp. 1	40415
382	Anthozon Epp.	12000

Table C-IIC (continued)
MCR DMRPCodeSpeciesCode
383
Anaitides sp. \#3 ..... 40300384385386387388
389390391392393394
$39!$396
397
398
399
400401
402403
Scolelepsis cirratulus ..... 40325
Glycera convoluta ..... 40311
Arenicolidae spp. ..... 19620
Arabellidae spp. ..... 19380
Autolytus spp. ..... 19202
Anobothrus gracilis? ..... 19702
Nephtys ferruginea ..... 19244
Macoma balthica? ..... 22324
Aedicira sp. 1 ..... 40285
Eteone sp. 1 ..... 40294
Heteromastus mpp. ..... 19653
Antinoella macrolepida? ..... 40282
Melinna spp. ..... 19706
Ouvendidee spp. ..... 19590
Merels zonata ..... 19231
Mesocheetopterus 1 ..... 40327
Canglaspls rubromoculata ..... 23907
Dhachotropls oculata ..... 40474
Chaetopterldae up. ..... 19480
Hyyymilar mb. ..... $23 \% 0$
balailidac myy. ..... 19740
Apychis disperidentata ..... 40136

## Table C-IIC (continued)

MCR   Code	Species	DMRP   Code
407	groniadudae spy.	19380
408	Glycinde picta	40149
409	Scalibregma inflatum	19803
410	Byblis sp. 1	40448
411	Bathymedon? sp. 2	40460
412	Proboloides sp. 1	40465
413	Guernea? sp. 1	40469
414	Hesionidae sp. 1	40288
415	Pelecypoda sp. \#4	40399
416	Armina californica	40375
417	Muculanidae spp.	21960
418	Pectinaria sp. 1	19664
419	Yhoronis spamsophila?	40488
420	Hesionidae sp. 2	40289
421	Echiula mp. 3	40485
422	Oligochaeta spp.	19900
423	Echiurida spp.	25400
424	Rutiderma ap. 1	40414
425	Amphiodia periercta-urtica	40489
426	Glycera mp. 1	40312
427	Echlura mp. 1	40486
428	Anthosod mp. 4	40255
429	Anthosos 0p. 5	40256
430	Anthozon ep. 6	40257

Table C-IIC (continued)
MCR DMRP
Code Species ..... Code
431 Macoma spp. ..... 22326
423 Exogone spp. ..... 19217
433 Arabellidae sp. \#3 ..... 40318434435436437438439440
Pilargis berkeleyae ..... 40360
Parandalia fauveli ..... 40359
Lumbrineris zonata ..... 19345
Myriochele heeri ..... 19581
Nemertea mp. \#1 ..... 40267
Ampharete arctica ..... 19713
Nephtys rickettsi ..... 40310
Pista spp. ..... 19734
Paraonis gracilis oculatus ..... 40095
Tharyx sp. \#3 ..... 40330
Maldanidae sp. \#14 ..... 40343
Praxillella affinis pacifica ..... 40339
Nemertea sp. \#2 ..... 40268
Terebellides stroemi ..... 19731
Aricidea neosuecica ..... 40094
Cossura nr. laevisata ..... 40290
Sigambra tentaculata ..... 19867
Nemertra sp. \#3 ..... 40269
Amplicteis sp. 1 ..... 40123
Isocirrus sp. \#1 ..... 40338
Lumbrineris minima ..... 40315

```
Table C-IIC (continued)
```

MCR   Code	Species	$\begin{aligned} & \text { DMRP } \\ & \text { Code } \end{aligned}$
455	Arabellidae sp. ${ }^{\text {\% }}$	40317
456	Nemertea sp. \#4	40270
457	Asychis sp. 2	40337
458	Schistomaringos annulata	40320
459	Podarkeolsis brevipalpa	40287
460	Nemertea sp. ${ }^{\text {\% }}$	40271
461	Sphaerodoridae spp.	40105
462	Asychis spp.	19566
463	Nomertea p. 6	40272
464	Nephtys cornuta franciscanum	40309
165	Harmothoe nr. Iunulata	19027
466	Hesperonoe sp. \#1	40282
467	Orbinia sp. 弗1	40092
468	Pherusa papillata	40333
169	Sphaerodoropsis sphaerulifer	40104
470	Brada pluribranchiata	40332
471		40273
472	Nemertea sp. 8	40274
473	Nemertea 8p. 9	40275
474	Lepidasthenia longicurrata	40603
475	Nemertea sp. 11	40277
476	Tenonia kitsapensis	40102
477	Typosyllis altarnata	40306
478	Exogone lourei	40110

Table C-IIC (continued)

MCR Code	Species	DMRP Code
479	Langerhansia heteorchaeta	40305
480	Lepidasthenia berkelyae	40100
481	Chone albocincta	40103
482	Travisia brevis	19546
483	Myriochele spp.	19583
484	Sigalionidae spp.	19055
485	Nemertea sp. \#12	40278
486	Orchomene sp. "2	40455
487	Paraphorus tridentatus	40461
488	Anisogammarus confervicolus	24067
489	Anisogammarus pugettensis	24069
490	Allorchestes sp. \#1	21497
491	Parapleustes pugettensis	24173
492	Corophium brevis	24047
493	Jassa? sp. 1	40452
494	Eohaustorius brevicuspis	40451
495	Corophium spinicorne	24053
496	Synidotea sp. \#2	40430
497	Synidotea sp. \#3	40431
498	Stenothoe sp. \#1	24182
499	Paraselloidea sp. \#1	40444
500	Edotea sublittoralis	40432
501	Pentidotea oculata	40434
502 .	Gnorimosphaeroma oregonensis	23921

Table C-IIC (continued)
MCR DMRP
Code Species ..... Code
503 Limnoria lignorum? ..... 23924
504 Pananthura? sp. \#1 ..... 40443
505
Argeia spp. ..... 40440506507508509510511512
513514515516517
518519520521522
Hemiarthrus abdominalis ..... 40441
Cymothoidae sp. \#l ..... 40446
Saduria entomon ..... 40435
Gastropteron pacificum ..... 40369
Nemertea sp. *13 ..... 40279
Idotea fewksei ..... 40433
Pagurus caurinus ..... 40484
Olivella spp. ..... 21654
Phoxucuphalus homilis ..... 40462
Stenothoidae spp. ..... 24178
Metopella sp. \#1 ..... 40466
Acteocina? sp. 1 ..... 40370
Pelecypoda sp. 20 ..... 40405
Crangon franciscorum ..... 24439
Collisella digitalis? ..... 40366
Turbellaria sp. Wl ..... 40258
Cumacea spp. ..... 23889
Tellina sp. 5 ..... 40387
Polecypoda sp. \#9 ..... 40401

Table C-IIC (continued)

MCR   Code	Species	DMRP Code
527	Isaeidae sp. 1	40470
528	Leucon sp. \#1	40424
529	Hyperiidea sp. \#1	24206
530	Cidutomermatidac spp.	40408
531	Tomburchus? sp. \#1	40394
532	Caprella sp. \#	40481
533	Echiura sp. \#5	40487
534	Neomenilda sp. \#1	40406
535	Corophium sp. \#1	40450
536	Nemertea sp. \#14	40280
537	Acanthomysis alaskensis?	40416
538	Trachypollia? sp. "1	40377
539	Odostomia spp.	21265
540	Capitella spp.	19654
541	Ophelina sp. \#l	40335
542	Pinnixa 1ittoralis	24966
543	Hirudinea spp.	20271
544	Anaitides longipes	40293
545	Gattyana ciliata	40283
546	Polynoe sp. \#l	40284
547	Callianassa californiensis	24614
548.	Cancer oregonensis	24931
549	Chorilia longiper	24909
550	Crangon communis	24450

Table C-IIC (eontinuod)
MCR DMRP
Code Species ..... Code
551
Parafalit: polynoides ..... 19153
552

Crangon munita
24440553554555556557558559560561562563564565566567568569570571
Crangon sp. \#1 ..... 24452
Nectocrancion alaskensis ..... 24451
Paguristes turgidis ..... 24654
Pagurus aleuticus? ..... 40483
Pandalus danae ..... 24417
Pandalus jordani ..... 24420
Pinnixa occidentalis ..... 24967
Sergestes similis ..... 24462
Spirontocaris avina ..... 24433
Spirontocaris barbr£a ..... 40046
Spironcocaris bispinosa ..... 24434
Spirontocaris cristata ..... 24430
Spirontocaris lamellicormis ..... 40047
Spirontocaris pusiola? ..... 40048
Syirontocaris suckleyi ..... 40050
Thysanoessa spinifera ..... 24374
Euphausia pacifica ..... 24360
Luidia foliolata ..... 40265
Pisastar brevispinus ..... 40266
Gorgonocephalus cary 1 ..... 17615
Ophiomusium jolliensis ..... 17616
Euphilomedes producta ..... 40412

## Table C-IIC (concluded)

MCR DMRPCodeSpeciesCode
575 Octopus sp. \#1 ..... 40409
576 Rossia pacifica ..... 22811
577 Pectinidae sp. \#1 ..... 40383
578 Gastropoda sp. *1 ..... 40365
579 Propeamussium davidsoni ..... 40395
580 Miscellaneous ..... \# 6
581 Cajrella mendax ..... 40482
582 Campylaspis sp. *4 ..... 40422583584585
586
587
588
Spirontocaris spp. ..... 40049
Diastylis parapinulosa ..... 40418
Lysianassidae ap. *2 ..... 40459
Diastylis pellucida ..... 40417
Eulalia leavicornuta ..... 40304
Stenothoides angusta ..... 40468


[^0]:    Figure C30. Distribution of Maldane sarsi

[^1]:    * Includes total number of individuals (N), percent constancy to stations and assemblages, and Biological Index (BI) for each species.

[^2]:    $\frac{\text { Station } 25}{\text { Dec 74－Jan }} 75$ St．ac 74－Jan 75
    April 1975

    Sept． 1975
    $\frac{\text { Station } 26}{\text { Dec } 74 \text {－Jan }} 75$
    
    June 1975
    Sept． 1975

